

Automatic Program Development

Automatic Program Development
A Tribute to Robert Paige

Olivier Danvy

Harry Mairson

Edited by

and

Fritz Henglein
DIKU, University of Copenhagen, Denmark

Alberto Pettorossi

Brandeis University, Waltham, MA, USA

BRICS, University of Aarhus, Denmark

DISP, University of Roma Tor Vergata , Italy, ,

A C.I.P. Catalogue record for this book is available from the Library of Congress.

www.springer.com

Printed on acid-free paper

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

ISBN 978-1-4020-6584-2 (HB)

Published by Springer,

ISBN 978-1-4020-6585-9 (e-book)

c
All Rights Reserved
© 2008 Springer Science + Business Media B.V.

 or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise,
without writte n permission from the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive
use by the purchaser of the work.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form

This book is dedicated to the memory

of our friend and colleague

Robert Paige (1947–1999)

Robert Paige

Preface

This book is a tribute to Robert Paige (New York, USA, 15 August 1947 – New York, USA,
5 October 1999), our accomplished and respected colleague, and moreover our good friend,
whose untimely passing was a loss to our academic and research community.

In this book we have collected the revised, updated versions of the papers which appeared
in two special issues of the Higher-Order and Symbolic Computation Journal [2, 3] which
were published in Bob’s memory. The book also includes some extra papers by colleagues
and members of the IFIP Working Group 2.1 of which Bob was an active, illuminating,
and stimulating member. All papers are focused on some of the research interests of Bob
and, in particular, on the transformational development of programs and their algorithmic
derivation from formal specifications. We hope that the reader will find this book a stimulus
for continuing and deepening these research lines.

We have included in the book: (i) an obituary written by Harry Mairson, (ii) reminis-
cences from three colleagues, Martin Davis, Helmut Partsch, and Alan Siegel, and (iii) some
personal recollections by Gary Paige, Bob’s brother.

The pictures were kindly provided by Nieba Paige, Bob’s wife, and their children Jane
and John. They were all very kind to us.

Bob Paige’s Research and Scientific Interests. Bob’s scientific interests were many, and his
achievements were many as well, witness his research retrospective and National Science
Foundation research proposal which are included in the first part of the book. In partic-
ular, Bob strongly contributed to the development of new techniques for the derivation of
algorithms and programs using the transformational methodology. According to the transfor-
mational methodology the programmer generally starts from specifications and transforms
them, aided by an automatic or semiautomatic system, into runnable algorithms exhibiting
high performance.

There are, basically, two kinds of transformation steps: the first kind consists in the
applications of rules according to suitable strategies à la Burstall–Darlington [1], and the
second kind consists in the applications of schema equivalences à la Walker–Strong [4].

Bob’s many research papers provide new insights into these two approaches to transfor-
mational programming and, in particular, he contributed to the development of techniques
which allow us to automatically derive algorithms and improve their efficiency, while preserv-
ing correctness. Such derivations and improvements were obtained by suitable modifications
of the recursion structure and/or choices of the data structures employed.

When proposing new techniques, Bob always strove for generality, in the sense that
these techniques should not be ad hoc tricks. On the contrary, they should have a large
range of applicability for a large class of specifications or programs. Only general ideas
could become the basis for an automatic system for program development. Bob’s APTS
system is indeed the incarnation of most of the techniques he proposed (see, for instance,
Leonard and Heitmeyer’s contribution in this book). Only general techniques may become
part of a new programming methodology and this was what, ultimately, Bob was looking
for and wanted to propose.

viii Preface

Bob’s colleagues and friends are all very happy to have been working and sharing ideas
with him. In particular, his colleagues at the Courant Institute in New York, the members of
the IFIP Working Group 2.1, and the people at the various Universities he visited, including
the University of Copenhagen and the University of Wisconsin.

All his friends and colleagues enjoyed Bob’s talks and presentations. His ideas and his
visions on program development and programming methodology were a source of enthusiasm,
strength, and inspiration.

We know that Bob had many more scientific topics and ideas which he wanted to explore,
but he did not have time to do it. He shared some of these ideas with us and he left them
for us as projects to do and, most importantly, as a gift we will treasure in our lives.

Bob’s dedication to research and teaching is for us all an example to follow.

Contributed Papers. In the third part of the book we have collected the following scientific
papers.
– Transformational Derivation of an Improved Alias Analysis Algorithm by Deepak Goyal,
a former PhD student of Bob Paige. The author uses various techniques developed by Bob
Paige, dominated convergence and finite differencing, to derive a new algorithm for the may-
alias analysis and to establish its time complexity. The new algorithm takes cubic time in the
size of the input and improves asymptotically to the previous best one, which was quintic.
– Dynamic Programming via Static Incrementalization by Yanhong Liu and Scott Stoller.
This paper describes a (semi)automatic program transformation that optimizes recursive
programs amenable to dynamic programming.
– Program Synthesis from Formal Requirements by Elizabeth Leonard and Constance Heit-
meyer. The authors describe a project to translate a requirements specification, expressed in
SCR notation, into the language C. Two translation strategies are discussed. Both were im-
plemented using the Abstract Program Transformation System (APTS), which was designed
and implemented by Bob and his collaborators.
– Derivation of Efficient Logic Programs by Specialization and Reduction of Nondetermin-
ism by Alberto Pettorossi, Maurizio Proietti, and Sophie Renault. The authors propose an
extension of both partial evaluation and conjunctive partial deduction to specialize nonde-
terministic programs. To this end, they consider definite logic programs and a new set of
transformation rules which extend the usual fold/unfold/define rules used for partial evalu-
ation.
– Universal Regular Path Queries by Oege de Moor, David Lacey, and Eric Van Wyk. This
work describes the development of an algorithm that abstracts a version of model checking
for flow graphs with annotations corresponding to inferred properties. The authors show
that such an algorithm can be derived systematically in the spirit of Bob Paige’s work.
– Least Reflexive Points of Relations by Jules Desharnais and Bernhard Möller. This paper
studies a generalization of the problem of finding conditions under which a function on
a partially ordered set has a least fixed point, and it also studies relations on complete
lattices. The authors present two main results about the existence of the least-fixed point,
and a theorem of Cai and Paige for computing it.
– Relativizations for the Logic-Automata Connection by Nils Klarlund. This paper describes
an efficient translation from logic M2L(str), a monadic logic of strings, into a variant of
WS1S, i.e., weak second-order theory of one successor. The main issue is an efficient handling
of the first-order and (weak) second-order quantifiers. The algorithmic treatment requires a
detailed study of the corresponding relativizations of formulas.
– Efficient Type Matching by Somesh Jha, Jens Palsberg, Tian Zhao, and Fritz Henglein. The
authors present an O(n log n)-time algorithm for matching recursive types and an O(n)-time
algorithm for matching nonrecursive types. The algorithm for recursive types works by
reducing the type matching problem to the problem of finding a size-stable partition of

Preface ix

a graph for which Paige and Tarjan provided an O(n log n) algorithm. The algorithm for
nonrecursive types employs multiset discrimination techniques due to Paige, Tarjan, Cai,
and Yang.
– Aspects as Invariants by Douglas Smith. Aspect-Oriented Programming offers tools for
the modular development of systems with crosscutting features. This paper presents a way
to express those features as logical invariants and then to generate the kind of code that is
usually produced from manually written aspects.
– Computational Divided Differencing and Divided-Difference Arithmetics by Thomas Reps
and Louis Rall. In this paper an approach conceptually similar to the Computational Differ-
entiation technique is used for computing the set of finite, divided differences of a sampled
function F (x): F [x0, x1] = (F (x0)−F (x1)) / (x0−x1).
– Program Transformations: Some Lessons from the 80s by Dave Wile. The author presents
some of the experience gained by the scientific community during that decade about design-
ing, implementing, and using program transformation systems.

References

1. R. M. Burstall and J. Darlington: Some transformations for developing recursive pro-
grams. In Proceedings of the International Conference on Reliable Software, Los Angeles,
USA, 465–472, 1975.

2. O. Danvy, F. Henglein, H. Mairson, and A. Pettorossi (Eds.): Special Issue in Memory
of Bob Paige (Part I), Vol. 16, Nos. 1–2 of Higher-Order and Symbolic Computation,
Springer, 2003.

3. O. Danvy, F. Henglein, H. Mairson, and A. Pettorossi (Eds.): Special Issue in Memory
of Bob Paige (Part II), Vol. 18, Nos. 1–2 of Higher-Order and Symbolic Computation,
Springer, 2005.

4. S. A. Walker and H. R. Strong: Characterization of flowchartable recursions. In Proceed-
ings 4th Annual ACM Symposium on Theory of Computing, Denver, CO, USA, 1972.

University of Aarhus, Denmark Olivier Danvy
University of Copenhagen, Denmark Fritz Henglein
Brandeis University, Massachusetts, USA Harry Mairson
Università di Roma Tor Vergata, Italy Alberto Pettorossi
June 2007

Bob Paige with his colleague Cai Jiazhen (about 1986)

Contents

Part I Robert Paige’s Research: A Retrospective and A Proposal

Research Retrospective on Transformational Development of Programs
Robert Paige (1947–1999) . 3

A National Science Foundation Proposal
Robert Paige (1947–1999) . 7

Part II Robert Paige: Brother, Friend, Colleague

A Song for My Brother
Gary D. Paige . 31

Robert Paige: Researcher and Teacher
Harry Mairson . 35

An Appreciation of Bob Paige
Martin Davis . 37

Bob Paige and the IFIP Working Group 2.1
Helmuth Partsch . 38

Remembrances of Bob Paige
Alan Siegel . 40

Part III Contributed Papers

Transformational Derivation of an Improved Alias Analysis Algorithm
Deepak Goyal . 49

Dynamic Programming via Static Incrementalization
Yanhong A. Liu and Scott D. Stoller . 71

Automatic Program Generation from Formal Specifications using APTS
Elizabeth I. Leonard and Constance L. Heitmeyer . 93

Universal Regular Path Queries
Oege de Moor, David Lacey, and Eric Van Wyk . 114

xii Contents

Derivation of Efficient Logic Programs by Specialization and Reduction
of Nondeterminism
Alberto Pettorossi, Maurizio Proietti, and Sophie Renault . 130

Computational Divided Differencing and Divided-Difference Arithmetics
Thomas W. Reps and Louis B. Rall . 178

Least Reflexive Points of Relations
Jules Desharnais and Bernhard Möller . 215

Efficient Type Matching
Somesh Jha, Jens Palsberg, Tian Zhao, and Fritz Henglein . 229

Aspects as Invariants
Douglas R. Smith . 247

Program Transformations: Some Lessons from the 1980s
David S. Wile . 264

List of Contributors

Oege de Moor
Computing Laboratory, Oxford University,
Parks Road,
Oxford, England, OX1 3QD
oege@comlab.ox.ac.uk

Jules Desharnais
Département d’Informatique,
Université Laval,
Québec, QC, G1K 7P4 Canada
Jules.Desharnais@ift.ulaval.ca

Deepak Goyal
Calypto Design Systems, Inc.
2933 Bunker Hill Lane, Suite 202,
Santa Clara, CA 95054, USA
dgoyal@calypto.com

Constance L. Heitmeyer
Center for High Assurance Computer
Systems, Naval Research Laboratory, 5546,
Washington, DC 20375, USA
heitmeyer@itd.nrl.navy.mil

Fritz Henglein
Department of Computer Science (DIKU),
University of Copenhagen,
DK-2100 Copenhagen, Denmark
henglein@diku.dk

Somesh Jha
Computer Sciences Department,
University of Wisconsin,
Madison, WI 53706, USA
jha@cs.wisc.edu

Nils Klarlund
Google, Inc.
76, 9th Avenue
New York, NY 10011, USA
klarlund@google.com

David Lacey
ClearSpeed Technology plc
3110 Great Western Court,
Hunts Ground Rd, Bristol, BS34 8HP, U.K.
david.lacey@clearspeed.com

Elizabeth I. Leonard
Center for High Assurance Computer
Systems, Naval Research Laboratory, 5546,
Washington, DC 20375, USA
leonard@itd.nrl.navy.mil

Yanhong A. Liu
State University of New York
at Stony Brook,
Stony Brook, NY 11794, USA
liu@cs.sunysb.edu

Harry Mairson
Computer Science Department,
Brandeis University,
Waltham, MA 02254, USA
mairson@brandeis.edu

Bernhard Möller
Institut für Informatik,
Universität Augsburg,
D-86135 Augsburg, Germany
moeller@informatik.uni-augsburg.de

Gary D. Paige
Dept. of Neurobiology and Anatomy,
University of Rochester, 601 Elmwood Ave.,
Box 603,
Rochester, NY 14642, USA
gary_paige@urmc.rochester.edu

xiv List of Contributors

Robert Paige (1947–1999)
Department of Computer Science,
New York University, 251 Mercer Street,
New York, NY 10012, USA
paige@cs.nyu.edu

Jens Palsberg
Computer Science Department, UCLA
4531K Boelter Hall,
Los Angeles, CA 90095-1596, USA
palsberg@ucla.edu

Helmuth Partsch
Faculty of Computer Science,
University of Ulm,
D-89069 Ulm, Germany
Helmuth.Partsch@uni-ulm.de

Alberto Pettorossi
University of Roma Tor Vergata,
Via del Politecnico, 1
I-00133 Roma, Italy
pettorossi@info.uniroma2.it

Maurizio Proietti
IASI-CNR,
Viale Manzoni, 30
I-00185 Roma, Italy
proietti@iasi.rm.cnr.it

Louis B. Rall
Dept. of Mathematics,
University of Wisconsin,
480 Lincoln Dr.,
Madison, WI 53706, USA
rall@math.wisc.edu

Sophie Renault
European Patent Office, Patentlaan 2
P.O. Box 5818
NL-2280 HV Rijswijk, The Netherlands
srenault@epo.org

Thomas W. Reps
Comp. Sci. Dept., University of Wisconsin,
1210 W. Dayton St.,
Madison, WI 53706, USA
reps@cs.wisc.edu

Douglas R. Smith
Kestrel Institute,
3260 Hillview Avenue,
Palo Alto, California 94304, USA
smith@kestrel.edu

Scott D. Stoller
State University of New York
at Stony Brook,
Stony Brook, NY 11794, USA
stoller@cs.sunysb.edu

Eric Van Wyk
Department of Computer Science and
Engineering, University of Minnesota,
Minneapolis, Minnesota 55455, USA
evw@cs.umn.edu

David S. Wile
Teknowledge Corp.
4640 Admiralty Way #1010,
Marina del Rey, CA 90292, USA
dwile@teknowledge.com

Tian Zhao
Department of Electrical Engineering and
Computer Science, University of Wisconsin,
Milwaukee, WI 53211, USA
tzhao@cs.uwm.edu

Part I

Robert Paige’s Research: A Retrospective and A Proposal

The young Bob Paige (about 1958)

Research Retrospective on Transformational
Development of Programs

Robert Paige (1947–1999)

Department of Computer Science, Courant Institute, New York University,
251 Mercer Street, New York, NY 10012, USA. paige@cs.nyu.edu

Robert Paige wrote this retrospective of his research work for the IFIP Working Group 2.1
meeting n. 53 which unfortunately he could not attend due to illness. This paper, delivered
at the meeting in his absence, is focused on the transformational development of programs.
The reader will find it useful to refer to the related paper “A National Science Foundation
Proposal”, also by Robert Paige, which is included in this book.

The group [the IFIP Working Group 2.1] was exciting in the 1970s, when we were groping
for direction and divided by different orientations. I guess it was in this atmosphere that
combined purpose with uncertainty where I found my own voice. The common goal was
a transformational program development methodology that would improve productivity of
designing and maintaining correct software. The emphasis was on algorithmic software.

We differed as to how to achieve this goal, and my approach was out on a limb. Based
on a few transformations, the most exciting of which was Jay Earley’s iterator inversion
combined with high level strength reduction, and also on an overly optimistic faith in the
power of science to shed light on this subject, I believed that algorithms and algorithmic
software could be designed scientifically from abstract problem specifications by application
of a small number of rules, whose selection could be simplified (even automated in some
cases) if it could be guided by complexity. Most all others (including the SETL crowd at
Courant) disagreed, and accepted the notion that algorithm design was inspired, and that
the most significant steps in a derivation were unexplainable eureka steps.

I knew that my goals were ambitious and with little supporting evidence. In fact the case
was too flimsy even to begin work on the components of a program development methodol-
ogy. It seemed better to gather facts first, to uncover compelling examples that might lead
to a theory, and to put together this theory only after the pieces were sufficiently understood
and developed.

In order to test the viability of a new transformational idea, I tried to demonstrate how
it could be used to improve some aspect of a “conventional” area of Computer Science; e.g.,
databases, algorithms, programming languages, etc. (but not transformational programming
itself). A conservative, neutral test would be determined by an evaluation of the improvement
(independent of the transformatonal idea) by members of the conventional area. A more
subjective, but still useful clinical test could be made by me checking whether the new idea
could improve the quality of education or facilitate my research. (I used the class room not
only as a laboratory for clinical tests, but also as a way for me to learn and retool in new
subject areas.) After developing the transformational idea further, it could be evaluated
directly by the program transformation community, e.g., at IFIP WG 2.1 meetings, other
conferences, or through the publication process.

Perhaps the most important component of a transformational methodology is a wide
spectrum language for expressing all levels of abstraction from problem specifications down

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 3–6.
c© 2008 Springer.

4 Robert Paige

to hardware-level implementations. Since I was a student at New York University with Jack
Schwartz as my adviser, naturally I went with SETL, and found it convenient to use in my
thesis work in finite differencing (from 1977–1979). As it turned out I was teaching full time
(4 courses per year) at Rutgers starting Fall 1977, and tried lots of research ideas out in the
class room early on.

Despite serious semantic flaws in SETL (some of which were fixed much later in SETL2), a
small subset of the language, augmented with a few standard abstract notations found in the
mathematical preliminaries chapters of standard Computer Science texts, provided students
with a simple, powerful, and sometimes executable mathematical notation. SETL’s small
but powerful repertoire of abstract operations proved convenient in being widely reusable in
modeling a variety of computer science concepts without the need for language extension.

In algorithms courses the built-in abstractions of SETL allowed data structures and rudi-
mentary strategies of many algorithms to be specified perspicuously and without extraneous
implementation detail. Default implementations of SETL’s abstract operations allowed such
specifications to be studied as executable prototypes, and tested empirically. Such specifica-
tions could also be used as the starting points for derivations of more efficient implementa-
tions. This made algorithm understanding easier, even (especially) with weak students who
were overwhelmed by the detail of Mix-like or Algol-like implementation-level specifications.
It seemed that this approach allowed me to cover much more material and convey much
greater understanding.

In database courses SETL notations seemed better than the standard query languages.
It facilitated teaching different data models, and different levels of description including
implementations at the level of file systems and indexes. A Philips Research Technical Report
by Lacroix and Pirotte [15], which compared over 100 database queries in 9 different query
languages plus English was instructive. SETL variants sketched out by Koenig and me
seemed to have greater clarity. A uniform wide-spectrum notation facilitated description
and analysis of file and database organization, and made it easier to describe mappings from
query to physical level and from one data model to another.

The wide-spectrum nature of the language made it easy to illustrate transformations at
and between various levels of abstraction. The first transformation that I developed was
finite differencing (a generalization of conventional strength reduction plus Earley’s Iterator
Inversion), whose goal was to speedup programs by replacing costly repeated computations
by less expensive differential counterparts.

Differencing is a mathematical idea with an old history. The chain rule mechanism and
other features of finite differencing can be described independently of any particular lan-
guage, but the wide-spectrum nature and simplicity of SETL seemed ideal for illustrating
the power and broad applicability of the transformation in a separate implementation de-
sign. Using SETL finite differencing, one can easily explain how to put together and analyze
(using a natural notational form of worst case and amortized complexity) so very many
efficient algorithms in a systematic way. This made teaching algorithms much easier.

One of the best examples of how surprising connections can be made, due to finite
differencing, took place at the IFIP WG 2.1 meeting in Chamrouse (France). We were
all trying to derive one of those efficient max sequence algorithms, and the use of finite
differencing at a major step suggested a similar step (to compute nested collective minimum
values) in the derivation of Dijkstra’s Single Source Shortest Path algorithm.

During these early years there was also one interesting objective test of finite differencing
in the area of databases. In his Turing Award address Codd said that integrity control was
an important open problem in relational databases. Successful use of finite differencing to
solve view maintenance and integrity control was reported in [14] and by Paige at the IFIP
WG 2.1 meeting in Toulouse (France), in 1983.

In Compiler classes at Rutgers I also developed a crude form of dominated convergence
in order to derive workset algorithms found in Hecht’s book [11] for solving global program

Research Retrospective on Transformational Development of Programs 5

analysis problems specified by fixed points. Work on this transformation progressed as it was
seen to be progressively more useful in deriving an increasingly wider range of algorithms.
And I continued to use it in combination with finite differencing in my compiler lectures
in order to derive the more difficult algorithms. However, it was not until my collaboration
with Cai that a comprehensive investigation and development of this transformation was
first completed in [4].

It became apparent from the beginning that I was looking for a transformational pro-
gram development methodology whose final step would be data structure selection beyond
which lay conventional compiler optimization. I also favored an approach limited to com-
posable simple data structures as are found in SETL’s method of basings and Wiederhold’s
file system design methodology instead of an expert system style as proposed by Barstow
and Kant. Despite some ingenious ideas, SETL data structure selection was largely ad hoc,
not amenable to formal complexity analysis, overrelying on hashing, missing a linked list,
and never proven (either analytically or empirically) to be an improvement over naive un-
optimized data structures.

Unfortunately SETL data structure selection was not good enough to produce high per-
formance code by a complexity driven approach. What was needed were data structures
guaranteed to support associative access (e.g., set membership testing) in unit worst-case
time for search arguments and set elements of arbitrary type. Also needed were principles
for selecting such data structures. It has taken many years to develop this transformation,
and a first comprehensive treatment will appear in Deepak Goyal’s thesis (expected in Fall
1999) [9]. Only recently was the transformation equipped with a suitable read method to
create the desired data structures. And I still do not understand how to eliminate enough
overhead explaining even very simple forms of data structure selection (described in sev-
eral papers cited in the references) to use this transformation conveniently in a standard
algorithms class.

Nevertheless, I believe that it is an essential final stage of and underpinning to a transfor-
mational methodology that (1) begins with dominated convergence to compute fixed-point
specifications, then (2) applies finite differencing to implement repeated expensive high-level
expressions more efficiently by exploiting the differential maintenance of program invariants,
and, finally, (3) uses data structure selection by real-time simulation to implement associa-
tive access operations in unit worst case time on a RAM.

Over the years we have uncovered extensive evidence that our methodology will scale
up and be capable of improving the productivity of large-scale system implementation.
Three kinds of evidence have been considered. Our SETL-based specification languages and
the transformations that implement them have been shown to be effective in terms of:
(1) explaining complex algorithms, (2) discovering new algorithms, and, most importantly,
(3) improving the productivity of efficient implementations of algorithms.

[The illustration of these three points has been done by Robert Paige himself in the
Sections 2.1.2 and 2.1.3 of the paper entitled: A National Science Foundation Proposal,
which is included in this book.]

Over the past few years, I have felt that, finally, there was enough evidence and know-
how to put together much of our work into a formal program development methodology
that could achieve my goals of 20 years ago. Although I was too sick to carry this work out,
I am happy that my student Deepak Goyal has done it in his Ph.D. thesis, which should
be finished some time over the summer 1999. Deepak ought to present it at a future IFIP
Working Group 2.1 meeting. Annie Liu, who is on Deepak’s Committee, can tell you more,
or you may look at Deepak’s home page, which is in the Ph.D. Student area of our New
York University Department home page. I think you will like it.

For anyone interested, Deepak will be working in John Field’s group at IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, starting November 1st. Until then, he will
be at New York University.

6 Robert Paige

References

(The references which were not cited in the text have been included for making it easier to
access the relevant literature.)

1. B. Bloom: Ready simulation, bisimulation, and the semantics of CCS-like languages.
Ph.D. Thesis, Massachusetts Institute of Technology, 1989.

2. B. Bloom and R. Paige: Transformational design and implementation of a new efficient
solution to the ready simulation problem. Science of Computer Programming, 24(3),
189–220, 1995.

3. J. Cai and R. Paige: Binding performance at language design time. In Proceedings of the
14th Annual ACM Symposium on Principles of Programming Languages, M.J. O’Donnell
(Ed.). ACM Press, München, West Germany, 85–97, 1987.

4. J. Cai and R. Paige: Program derivation by fixed point computation. Science of Com-
puter Programming, 11(3), 197–261, 1989.

5. J. Cai and R. Paige: Towards increased productivity of algorithm implementation. In
Proc. ACM SIGSOFT FSE, 71–78, 1993.

6. J. Cai and R. Paige: Using multiset discrimination to solve language processing problems
without hashing.Theoretical Computer Science, 145(1–2), 189–228, 1995.

7. C.-H. Chang and R. Paige: From regular expressions to DFA’s using compressed NFA’s.
Theoretical Computer Science, 178(1/2), 1–36, 1997.

8. W. F. Dowling and J. Gallier: Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. J. of Logic Programming, 1(3), 267–284, 1984.

9. D. Goyal: A Language Theoretic Approach To Algorithms. Ph.D. Thesis, Department
of Computer Science, New York University, NY, 169 pages. 2000.

10. D. Goyal and R. Paige: The formal reconstruction and improvement of the linear time
fragment of Willard’s relational calculus subset. In Algorithmic Languages and Calculi,
R. Bird and L. Meertens (Eds.), Chapman & Hall, 382–414, 1997.

11. M. S. Hecht: Flow Analysis of Computer Programs, Elsevier North-Holland, 1977.
12. J. P. Keller and R. Paige: Program derivation with verified transformations — A case

study. Comm. on Pure and Applied Mathematics, 48(9/10), 1053–1113, 1996.
13. D. E. Knuth: The Art of Computer Programming, Volume II: Seminumerical Algorithms.

Addison-Wesley, 1969.
14. S. Koenig and R. Paige: A transformational framework for the automatic control of

derived data. In Proceedings of the 7th International Conference on Very Large Data
Bases. Cannes, France, 306–318, 1981.

15. M. Lacroix and A. Pirotte. Example queries in relational languages. Technical Note
107, Philips Research Laboratory, Brussels (Belgium), 1977.

16. R. Paige Formal Differentiation. UMI Research Press, 1981.
17. R. Paige and F. Henglein: Mechanical translation of set theoretic problem specifications

into efficient RAM code — A case study. Journal of Symbolic Computation, 4(2), 207–
232, 1987.

18. R. Paige and S. Koenig: Finite differencing of computable expressions. ACM Transac-
tions on Programming Languages and Systems, 4(3), 402–454, 1982.

19. R. Paige, R. E. Tarjan, and R. Bonic: A linear time solution to the single function
coarsest partition problem. Theoretical Computer Science, 40(1), 67–84, 1985.

20. R. Paige and Z. Yang: High Level reading and data structure compilation. In Pro-
ceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Programming
Languages, N. D. Jones (Ed.). ACM Press, Paris, France, 456–469, 1997.

21. J. H. Reif and H. R. Lewis: Symbolic evaluation and the global value graph. In Proceed-
ings of the Fourth Annual ACM Symposium on Principles of Programming Languages,
R. Sethi (Ed.), ACM Press, 104–118, 1977.

A National Science Foundation Proposal

Robert Paige (1947–1999)

Department of Computer Science, Courant Institute, New York University,
251 Mercer Street, New York, NY 10012, USA. paige@cs.nyu.edu

Summary. The objectives of this research are to improve software productivity, reliability, and
performance of complex systems. The approach combines program transformations, sometimes in
reflective ways, to turn very high-level perspicuous specifications into efficient implementations.
These transformations will be implemented in a metatransformational system, which itself will be
transformed from an executable specification into efficient code. Experiments will be conducted to
assess the research objectives in scaled-up applications targetted to systems that perform complex
program analysis and translation.

The transformations to be used include (i) dominated convergence (for implementing fixed-
points efficiently), (ii) finite differencing (for replacing costly repeated calculations by less expensive
incremental counterparts), (iii) data structure selection (for simulating associative access on a RAM
in real time), and (iv) partial evaluation (for eliminating interpretive overhead and simplification).
Correctness of these transformations, of user-defined transformations, and of the transformational
system itself will be addressed in part. Both the partial evaluator and components of the transfor-
mational system that perform inference and conditional rewriting will be derived by transforma-
tion from high-level specifications. Other transformations will be specified in terms of Datalog-like
inference and conditional rewriting rules that should be amenable to various forms of rule induction.

Previously, Cai and Paige in [12] used an ideal model of productivity free from all human fac-
tors in order to demonstrate experimentally how a transformation from a low-level specification
language into C could be used to obtain a fivefold increase in the productivity of efficient algorithm
implementation in C in comparison to hand-coded C. However, only small-scale examples were con-
sidered. The proposed research includes a plan to expand this model of productivity to involve other
specification languages (and their transformation to C), and to conduct experiments to demonstrate
how to obtain a similar fivefold improvement in productivity for large-scale examples of C programs
that might exceed 100,000 lines.

The proposal lays out extensive evidence to support the approach, which will be evaluated
together with its theoretical underpinnings through substantial experiments. If successful, the results
are expected to have important scientific and economic impact. They are also expected to make
interesting, new pedagogical connections between the areas of programming languages, software
engineering, databases, artificial intelligence, and algorithms.

Keywords: partial evaluation, program transformation, software productivity, software perfor-
mance, data structure selection, language translators.

1 Introduction

Program Transformations is about semantics-based analysis and manipulation of programs.
Over the last 20 years we have made contributions to the area by developing two dis-
tinct tracks: (1) general-purpose problem specification and its transformation to efficient
programs, and (2) special-purpose specification of systems that implement the program

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 7–27.
c© 2008 Springer.

8 Robert Paige

analysis and transformations used in Track (1). The long term goal is to combine both
tracks.

Previously, using the approach of Track (1) we were able to demonstrate effective trans-
lations of high-level specifications of algorithms into high performance codes limited to
small-scale examples. In [12] Cai and Paige developed an ideal model of productivity free
from human factors. Within this model they gave experimental evidence that their trans-
formational approach to program development leads to at least a fivefold improvement in
productivity of efficient algorithm implementation in C as compared to hand-coded C. How-
ever, those experiments only considered small-scale examples of procedureless programs no
more than 10 pages long. In the proposed grant period, we plan to extend our specification
languages and the transformations that implement them in order to specify and develop
efficient large-scale systems with a similar improvement in productivity.

Previously, using the approach of Track (2) we were able to demonstrate effective devel-
opment of large-scale systems limited to inefficient prototypes. The complex translation of
a statically typed variant of SETL into C used in the productivity experiments mentioned
above was specified in RSL (Rule Specification Language), a high-level language imple-
mented by the APTS program transformation system [37]. The translation suffered from
two major sources of inefficiency. First, APTS is implemented in SETL2 [49], which runs 30
times slower than C at best. Second, APTS only provides an interpretive implementation
for RSL. Hence, the translation of SETL to C was bogged down to 24 lines per minute on
a SPARC 2. In the proposed grant period we plan experiments to test the feasibility of a
radical new transformational methodology that combines reflective forms of partial evalua-
tion (to eliminate interpretive overhead) and data structure selection (to replace the naive
SETL2 runtime) used in Track (1) in order to gain a 300-fold speedup in RSL execution.

By combining improvements to both tracks, we plan to demonstrate a five- to tenfold
improvement in productivity for implementing large-scale systems with more than 100,000
lines of C. Our automated program development methodology is most effective in devel-
opment of systems with high algorithmic content, which are among the most difficult to
construct and maintain by hand. Included in this class of systems are those that imple-
ment complex program analysis and transformation, which is the application domain for
the research proposed here. An example is the SETL-to-C translator, an RSL specification
which our methods are expected to speedup by a factor of 300.

Section 2 of this proposal describes a cohesive research project that should take 3–5
years to complete for three Ph.D. students and the Principal Investigator. Section 3 details
a number of experiments, including a novel, reflective combination of partial evaluation
and data structure selection, that are expected to be completed within the 3-year funding
period. Although this proposal only seeks funding for one Ph.D. student, two other student
participants will be funded by other sources—one by New York University (NYU) fellowship
and another by an Office of Naval Research (ONR) grant that partly overlaps with this
proposal.

2 Background and Objectives

2.1 Track (1): Background

Specification Languages and Transformations

Within Track (1) we consider an implementation language (e.g., C) that serves as a con-
ventional RAM model of computation. We also consider three successively more abstract
specification languages, each implemented in terms of the next successively lower-level lan-
guage by a distinct transformation. By associating syntactic constructs with asymptotic
complexity, we are able to predict precisely how each transformation can improve program
running time and space. Consequently, the selection of transformations can be guided by

A National Science Foundation Proposal 9

complexity considerations, and the three specification languages are made computationally
transparent (i.e., amenable to formal algorithmic analysis).

Low SETL, our lowest level specification language, is a statically typed, executable vari-
ant of SETL2 [49], a pointerless, block structured, imperative language augmented with
a repertoire of primitive set operations such as membership testing, element addition and
deletion, arbitrary choice, for-loops through a set, map application, indexed map assign-
ment, and so forth. Its perspicuousness rests on copy/value semantics, and its ability to
navigate through data directly rather than by indirect location formulas using pointers or
cursors. Associative access and nondeterministic selection and search contribute to its read-
ability and succinctness. The data structure selection transformation [6, 36, 38] is based on
a low-level theory of data structures in which set and map operations (such as associative
access) are simulated on a RAM in real time; i.e., a conventional physical structure written
in C is selected for implementing each primitive set operation (for search arguments and
type-compatible set or map domain elements of any data type) in unit worst-case time.

An important aspect of this work is that the type system (fragments of which are found
in [7, 24, 28, 40]) is a strongly typed variant of the Curry/Hindley type discipline for the
λ-calculus [17,26]. It is parametric since it contains type variables, but currently is not poly-
morphic. The type system together with the data structure selection transformations make
it possible to analyze Low SETL programs for their worst-case time and space complexity.
This allows programmers to be guided by complexity considerations, which is essential to
the production of high performance systems. Using Low SETL as a solid foundation, the
other two specification languages obtain computational transparency by the way they are
mapped into Low SETL.

High SETL is a statically typed, imperative, executable superset of Low SETL augmented
with such abstract operations as set comprehension, quantification, and a variety of oper-
ations on binary relations. Computational transparency is obtained by implementing High
SETL expressions in Low SETL in two ways. Firstly, the cost of fresh evaluations of high-
level expressions can be determined by implementing them directly into Low SETL. More
interestingly, we can use our finite differencing transformation [31, 35] to evaluate repeated
costly High SETL expressions by more inexpensive incremental counterparts in Low SETL.
We determine the cost of these differential calculations by associating precise amortized com-
plexities with an eager strategy for maintaining equality invariants E = f(x1, . . . , xk) within
worst-case sequences of modifications to variables x1, . . . , xk; i.e., each time a modification
to x1, . . . , xk occurs, variable E is updated to reestablish the invariant. High SETL allows
us to avoid having to write error-prone bookkeeping operations that maintain invariants dif-
ferentially. By associating amortized complexity with maintenance of basic invariants, and
by closure rules that allow us to determine the cost of maintaining collections of interdepen-
dent invariants, we can generate languages of High SETL invariants that can be maintained
differentially with precise complexities [8].

The highest level specification language is SQ2+ [9], a nonexecutable, statically typed,
functional subset of High SETL augmented with least and greatest fixed-points. These
fixed-point expressions abstract error-prone, iterative looping constructs. Computational
transparency is obtained for SQ2+ by associating fixed point operations with precise imple-
mentations in High SETL using our dominated convergence transformation [9]. Dominated
convergence computes fixed points in terms of High SETL loops generating “chaotic”, finitely
converging sequences [16] that are less expensive than Tarski sequences [50]. Both fresh and
differential calculations of fixed-point expressions have been considered. We also developed
specification languages that are subsets of SQ2+ with guaranteed worst-case execution com-
plexities in time and space for each polynomial degree [8, 10].

Over the years we have uncovered extensive evidence that our methodology will scaleup
and be capable of improving the productivity of large-scale system implementation. Three
kinds of evidence have been considered. The specification languages and the transformations

10 Robert Paige

that implement them have been shown to be effective in terms of (1) explaining complex
algorithms, (2) discovering new algorithms, and, most importantly, (3) improving the pro-
ductivity of efficient implementations of algorithms. In order to enhance the credibility of
this proposal, we will present some of this evidence in the following two subsections.

Algorithm Explanation and Discovery

Most mainstream research in Program Transformations emphasizes principles for construct-
ing derivations with illustrations drawn from known algorithms. The purpose has been to
uncover common patterns of abstraction in specification and transformation that could form
the basis of a useful methodology for making algorithm design and program development
easier. Short, elegant transformational proofs (of correctness integrated with analysis) doc-
ument implementations of complex algorithms, lend greater confidence in the correctness of
complex codes, and provide greater assurance in the reliable modification of such codes.

Perhaps the first examples of nontrivial algorithms being derived by finite differenc-
ing were presented in [31, 34]. Included among these examples is a SETL specification
of Dijkstra’s naive Bankers Algorithm and its transformation into Habermann’s efficient
solution. This derivation was done without knowledge of Habermann’s solution, and there
were no dead ends. Finite differencing homed right in on a solution matching Habermann’s
time/space bounds.

It is well known that the construction of optimizing compilers is a costly labor-intensive
task. Can this labor be reduced by our methods? To answer this question in part, we showed
how easy it was to specify dozens of programming language and compiler analysis problems
in SQ2+, to simplify these specifications, and to transform them by dominated convergence
into High SETL prototypes [9]. In [8] we showed how the constant propagation algorithm of
Reif and Lewis [42] could be expressed as set-theoretic equations in a subset of SQ2+ that
could be mapped into RAM code guaranteed to run in linear time in the size of the program
dataflow relation.

The use of notation has been regarded as a burden to algorithm designers ever since
Knuth came out with Mix [30]. But can notation also help satisfy the needs of the algorithm
community—precise algorithmic analysis and succinct exposition? An SQ2+ specification
of the Single Function Coarsest Partition Problem and its transformation by dominated
convergence, finite differencing, and real-time simulation was used to derive a new linear
time solution [39]. That algorithm paper was selected for publication in a special issue of
TCS as a best paper from ICALP. In [40] a much improved explanation of the algorithmic
tool called Multiset Discrimination in [11] was obtained by specifying the algorithm in Low
SETL and using its type system to formally explain and analyze the low level implementation
that would be obtained by real-time simulation. The earlier presentation of this algorithmic
device involved so much indirection from pointer-based primitives, that most readers were
confused. Some of these earlier readers agreed that the Low SETL presentation clarified
their understanding.

The viability of a transformational methodology can be demonstrated by using it
to “explain” or “prove” well-known algorithms. However, if in the course of such formal
explication no new deep structure is uncovered that leads to improved solutions, then its
impact on algorithmics and programming productivity is likely to be limited. More powerful
evidence favoring a transformational methodology is provided if it can be demonstrated to
help facilitate the discovery of new algorithms. Our success with algorithm discovery may
be attributed to our reliance on complexity in both specification and transformation.

Our first instance of algorithm discovery by transformation was reported in [38], where we
used all three transformations to turn an SQ2+ specification of Horn Clause Propositional
Satisfiability into a new linear time pointer machine algorithm. Previously, Dowling and
Gallier found a linear time algorithm [19] that relied heavily on array access. In [4] we used
dominated convergence and finite differencing to derive a Low SETL executable prototype

A National Science Foundation Proposal 11

from an SQ2+ specification of ready simulation. We then showed informally how the Low
SETL prototype could be turned into an algorithm that runs five orders of magnitude
faster than the previous solution in [3]. All three transformations, but especially real-time
simulation (where types were shown to be useful in modeling complex data structures),
were involved in the discovery of a new improved solution to the classical problem of DFA
minimization [28]. Finite differencing was used extensively in [15] to derive a new improved
solution to the classical problem of turning regular expressions into DFA’s. Perhaps our
most convincing paper-and-pencil result was in [24], where Goyal and Paige used Low SETL
specifications and real-time simulation to improve Willard’s time bound for query processing
from linear expected to linear worst-case time without degrading space. Willard’s original
algorithm was extremely difficult, and involved over 80 pages of proofs. Our transformational
approach yielded much shorter but also more precise constructive proofs that led to an
implementation design. Here is a first successful example of scalingup.

Two summers ago, Ph.D. student Deepak Goyal designed and implemented “practical”
algorithms in Java at Microsoft. He believes that his use of Low SETL and the data structure
selection transformation as part of a programming methodology increased his productivity
and improved the quality of the code that was produced.

Experimental Foundations for Productivity Improvement

Perhaps the most compelling evidence that our transformational methodology will scaleup
and provide a dramatic improvement in the productivity of large high-performance complex
systems may be found in the experiments by Cai and Paige [12]. In that paper we developed
a simple but conservative model of productivity. Within that model we demonstrated a
fivefold improvement in productivity of high performance algorithm implementation in C in
comparison to hand-coded C.

Those experiments tested an approach to producing C programs by writing programs
in a simple variant of Low SETL, and compiling them into high performance C. The high
performance of the C code produced by the SETL-to-C translator is based on the translator’s
ability to simulate associative access (e.g., finite set membership or finite map application)
on a RAM in real time.

Measuring productivity improvement depended on two assumptions. The first is that one
line of Low SETL takes no more time to compose than one line of C. This assumption is not
controversial. Our experience is that one line of Low SETL can be produced faster than a
line of C. The generally lower-level of discourse in C creates an intellectual gap between the
program and the mathematical function it computes. For example, in order to implement
SETL’s element deletion operation (s less:= x) efficiently in C would require at least 10
carefully chosen C operations. The need to access data through pointers and cursors in C
creates a greater level of indirection (which complicates understanding) than in SETL, where
data is accessed directly through values.

The second assumption is that the C code generated automatically from Low SETL has
roughly the same number of lines as equivalent hand-coded C. We found that the generated
C was between 10% and 30% larger than hand-coded C, and concluded that the errors in
the two assumptions would cancel each other out.

Suppose we measure programming productivity in a given programming language as the
number of pretty-printed source lines produced per unit time. Suppose also that productiv-
ity decreases as the conceptual difficulty in understanding a program grows. Then in our
investigation, which is restricted to highly algorithmic programming (as is found in complex
language systems and environments), conceptual difficulty is roughly reflected in the size of
the dataflow relation, which can be expected to grow nonlinearly with the number of source
lines. Thus, programming productivity P (L), as a function of the number of program source
lines L, increases as L decreases.

12 Robert Paige

Let L2 be the size of a C Program C2 compiled from a Low SETL specification S1 of
size L1, and let C3 be a handcrafted C program equivalent to C2. By assumption one, we
can use the same productivity function P (L) for programs written in both Low SETL and
C. By assumption two, we know that the size of C3 is roughly the same as the size L2 of
C2. Then the improvement in productivity by using our automated program development
methodology versus handcrafted programming is given by the time L2/P (L2) to manually
produce C2 divided by the time L1/P (L1) to manually produce S1, which is

(L2/L1)(P (L1)/P (L2)) > L2/L1

since P (L1)/P (L2) > 1 whenever L1 < L2.
It should be emphasized that our experiments did not measure productivity directly,

which would have required difficult and costly analysis of human factors such as programming
expertise and intelligence. Instead we measured productivity improvement by exploiting
the two assumptions mentioned above to obtain an objective, inexpensive, and credible
framework for conducting comparative productivity experiments that could avoid all human
factors. The ratio of lines of C code generated automatically from Low SETL divided by
the number of lines of Low SETL being compiled gives a lower bound on productivity
improvement. Every algorithm that we tested in [12] yielded ratios that exceeded 5, and
that grew as the input size grew.

Although we found that the C code generated automatically from Low SETL had runtime
performance comparable to good hand code (whose running time, excluding I/O, was at least
30 times faster than SETL2 running time executed by the standard SETL2 interpreter),
only small-scale examples were used. The largest C program was about 10 pages. Low SETL
lacked procedures, and the type system was highly restricted. The SETL-to-C production
rate was too slow—about 24 lines of C per minute on a SPARC 2. Finally, high-level SETL
input had to be translated into low-level C input at compilation time.

The hypothesis that productivity improvement will scaleup by our methods is based on
the methodology and the application domain. Real-time simulation is applied uniformly to
each instruction of a program regardless of program size. Program analysis and transforma-
tion algorithms have a complex combinatorial nature, which fits our model of productivity.

2.2 Track (1): Scaleup Objectives

In order for Track (1) to be useful in developing systems, the three specification languages
need to be reconstructed. The foundation for this reconstruction is a full-scale design of
Low SETL. To this end we plan to enrich the functionality of Low SETL and extend its
type system. Formal semantics for Low SETL need to be worked out along with the type
system as it was in the earlier typed SETL variant found in [7]. And in order to support
computational transparency, we need to incorporate complexity assertions within a formal
rule system along the lines of Goyal and Paige [24].

In [40] tagged alternation, user defined types, and recursive subtypes were proposed for
Low SETL. Polymorphism and higher order functions are also needed. Thus far, we have
successfully modelled listlike data structures in the type system. The next step is to show
how the type system can be used to model more realistic hybrid data structures built up
from arrays and lists. We believe that our solutions might benefit the implementation of
vectors in Java.

We also need to develop a type inference model that augments the model found in [7]
and the inference algorithm found in the SETL-to-C translator [12] to handle the new type
system. The powerful batch read feature found in [40] allows external input in string form
to be validated and converted to complex data structures in linear time in the length of
the string for any list of variables with any signature in the type system. This needs to be
augmented with interactive input/output. Modules, procedures, and type conversions across
procedure and module boundaries need to be added too.

A National Science Foundation Proposal 13

Perhaps the main unresolved problem in implementing Low SETL has to do with its
copy/value semantics. This is a hard problem that has been the major source of inefficiency in
two generations of SETL compilers. The strategy of SETL1 [47] and SETL2 is to implement
lazy copies. That is, assignment of large objects (e.g., sets and tuples with arbitrary depth of
nesting) or incorporation of a large object into another large object is implemented by only
copying pointers. Since a large object may be shared under this strategy, it is first copied
whenever it is updated in order to avoid any side effect. With this approach hidden copies can
potentially degrade program performance from O(f(n)) expected time to O(f(n)2) actual
time. In [12] we observed 30,000-fold slowdowns in SETL2 performance due to unnecessary
hidden copies.

Schwartz [45,46] developed an interesting but complicated value flow analysis for SETL1
[47] in order to detect when hidden copies could be avoided, and update operations could be
performed in place. The difficulty of the analysis seems to stem, in large part, from the fact
that SETL1 did not implement reference counts, so that the analysis had to prove that an
r-value was unshared. It was never implemented, and a completely different naive approach
that was eventually used proved to be unsatisfactory.

In SETL2 dynamic reference counts of all references (these are used for default boxed
implementations, and are not part of the SETL2 language) to each tuple or set value are
maintained. Highly restricted circularity of references ensures that when a value has a ref-
erence count greater than 1, then that value is shared , and cannot be updated unless it is
first copied. In order to perform element addition S with:= a (which adds element a to set
S) in place, the location that stores S must have a reference count of 1 and be different
from the location that stores a. Otherwise, a hidden copy of S is made, and the update is
performed on the copy. Unfortunately, the backend of Snyder’s SETL2 compiler introduces
so many compiler-generated temporary variables (which do not get garbage collected until
the end of scope) that practically all data is shared at runtime.

In [12, 36], we solved this problem by assuming that all updates were performed on
unshared values, and so, could be updated in place. Any program that violated this
assumption was considered “erroneous” (in the sense of Ada). This approach obtained some
credibility in [12, 24], where SQ2+ and High SETL specifications were transformed into
Low SETL programs guaranteed not be erroneous a priori. However, this approach may
not be satisfactory for manual programming directly in Low SETL in scaledup applications.
Recently, Goyal and Paige solved this problem using dynamic reference counts, dead code
analysis, and analysis of when large data must share the same location [25]. A very local im-
plementation of this approach for SETL2 was shown to speedup APTS runtime by a factor
of 10. However, dynamic reference counts do incur a constant factor overhead in running
time, so it would be interesting to see if more powerful and complicated analysis of when
data may share the same location could be used in order to detect a wide range of contexts
where dynamic reference counts can be avoided.

Development of a robust Low SETL specification language would serve as the foundation
for the other two higher level specification languages. In [7] variants of High SETL and
SQ2+ were formulated within a simple type system, which was only crudely associated with
complexity in an ad hoc way. We propose to reconstruct both specification languages with
an enriched type system based on Low SETL.

Scaledup applications planned during the grant period include a reimplementation of
APTS modules for pattern matching and inference in High SETL to be compiled into C.
The batch read algorithm will be written in High SETL, translated into C, and benchmarked
relative to the hash-based SETL2 read method. Finally, we plan to implement Willard’s RCS
queries in High SETL to be compiled into C.

Developing better scientific means of measuring productivity and productivity improve-
ment are important but extremely difficult. The model of productivity improvement devel-
oped in [12] was necessarily ideal, and only used for the Low SETL specification language.

14 Robert Paige

We would like to explore how to extend this model in order to test productivity improvement
in C for High SETL and other specification languages.

2.3 Track (2): Background

Specification Language and Implementation

Track (2) has to do with the methodology needed to implement Track (1). RSL (Rule
Specification Language) is a high-level language for specifying language translators, analyz-
ers, and program transformations used in Track (1). RSL specifications are compiled and
executed using the APTS metatransformational system, which was built by Cai and Paige
to implement this methodology [37]. Appendix A explains the methodologies of Tracks (1)
and (2) by illustrating an actual APTS transcript of automatic program development using
the SETL-to-C translator.

APTS was designed to implement complex program transformations and program analy-
sis for any deterministic context free language. It is a collection of modules, each performing
an independent task implemented by an interpreter for a different language paradigm, includ-
ing logic-based inference, conditional rewriting, finite differencing, commands, and syntax.
RSL is a single integrated transformational language with programming-in-the-large features
such as an Ada-like library, separate compilation, and fine-grained incremental compilation.
APTS is entirely written in only 15,000 lines of SETL2 source code (including comments),
and it contains no foreign tools. It can be extended by call-in and call-out capabilities relative
to compatible SETL2 modules.

Compilers written in RSL make use of the following APTS components. The Rule Data-
base (RDB) contains inference rules that define relations storing program properties, e.g.,
type or dataflow. These relations may be defined over a variety of domains including con-
ventional domains (booleans, integers, strings), the domain of abstract program points (i.e.,
simple contexts), program terms (the syntactic values that occur at program points), and
Lisplike S-expressions (a general domain used to embed arbitrarily deeply nested types
amenable to first order unification). Inference rules are specified in a language similar to
Datalog [51] augmented with function symbols and primitive pattern matching predicates.
The APTS inference engine analyzes the program (being compiled) for properties specified
in the RDB, and it outputs the Program Database (PDB) of finite relations (sets of tuples
that represent ground terms) storing the program’s properties.

The Transformation Database (TDB) contains conditional meaning-preserving program
transformations of two kinds—rewriting or finite differencing. The transformation engine
selects a transformation T by matching T with a portion of the program, and by ensuring
that the applicability condition for T, when instantiated with the current PDB, is satisfied.
It then applies transformation T to the program to obtain a new transformed program.
Consequently, the PDB must be updated to be consistent with the new program and the
RDB.

The inference and transformation engines make use of the efficient bottom-up pattern
matching algorithm of Cai, Paige, and Tarjan [13]. The inference engine used to calculate
RDB relations [6] combines this bottom-up pattern matcher with RETE style pattern match-
ing [22] and seminaive evaluation of Datalog [1,2,51]. Part of the signature of a relation allows
seminaive evaluation to calculate relations as in a simple addition system or with built-in
unification.

The use of APTS as a crucial vehicle in the proposed research may be justified simply by
convenience—we have access to its source code, and the source language is SETL2, which is
not hard to rewrite into Low SETL. However, its functionality also compares favorably with
other systems. The APTS logic-based inference method for program analysis implementation
was influenced by the earlier Mentor and Centaur systems [5,18], which were among the first
systems to break away from attribute grammars and use a more general logic-based approach
to program analysis. Reliance on foreign tools such as Lex, YACC, and Prolog makes Centaur

A National Science Foundation Proposal 15

powerful but inefficient. Unlike Centaur’s reliance on Prolog’s general-purpose inference
engine, our implementation has been designed specifically for high performance program
analysis.

The goal of using incremental computation as part of a transformational environment for
APTS was influenced by the Synthesizer Generator [43]. It uses a first-order functional lan-
guage called SSL to specify syntax, attribute equations, as well as program transformations.
In the SG, program analysis is performed by attribute evaluation and incremental attribute
evaluation relative to program editing modifications [44]. Although efficient attribute reeval-
uation is an important benefit of attribute grammars, this approach limits navigation to the
syntax tree, which makes global analysis inefficient. Thus, it is often the case that an escape
from the attribute grammar formalism is warranted, and C procedures are introduced.

Although RSL includes a command language, which, like SSL, can operate directly on
syntax trees, the RSL subcomponents for logical inference, conditional rewriting, and built-
in finite differencing are more abstract and declarative. The RSL style discourages direct
reference to the syntax tree or its structure, and encourages reference to the tree indi-
rectly by pattern matching. The algorithms that implement those subcomponents are highly
sophisticated; e.g., the on-line preprocessing algorithm for multipattern tree matching [13].

Refine [41] is a robust, commercially available transformational system, that offers a
language like SSL for manipulating syntax trees. KIDS [48] (which is built on top of Refine)
implements rewriting and inference on top of Refine, and is highly regarded as a well-
engineered system in the transformational community. The directed inference mechanism
used by KIDS uses the full power of first order theorem proving, which is needed for program
synthesis tasks. However, this approach trades efficiency and automation for generality, and
is probably not well suited to scaledup applications, where automatic program analysis is
essential.

2.4 Track (2): Scaleup Objectives

The most pressing and perhaps most difficult open problem in APTS system research is
in devising an automatic scheme to maintain the consistency of PDB relations incremen-
tally after a program is changed by transformation. The idea is to automatically generate
an Incremental Rule Database (IRDB) from the Batch RDB and a program transforma-
tion. This would allow the inference engine to recalculate the PDB efficiently by executing
the IRDB each time a program transformation is applied. Some combination of differen-
tial techniques and partial evaluation is needed to solve this crucial but difficult research
problem.

The current version of APTS handles this problem automatically for extensional rela-
tions such as monotone and type (which are invariant with respect to equivalence-preserving
expression replacement). However for intensional relations such as free and bound vari-
ables, control flow, and most subtype relations, APTS requires the user to annotate each
conditional rewriting rule R with instructions on how to update the PDB each time R is
applied.

Solving this problem fully automatically would eliminate one of the most difficult and
error-prone aspects of RSL programming. Of course, a good algorithmic solution must
depend on a clean formal semantics, leading to the practical integration of analysis and
transformation. More generally, it would also enhance a top-down stepwise refinement frame-
work in which global analysis is reserved for the highest level, perspicuous specifications, and
local analysis is sufficient to select and justify transformations whose application propagates
semantic facts to lower-level implementations.

The only related work we are aware of is that of Emma van der Meulen [52], who
gave initial solutions to incremental conditional rewriting for the ASF+SDF system [29], a
descendant of Centaur. Her methods were based on reducing primitive recursive schemes to
strongly noncircular attribute grammars, and either applying the Reps, Teitelbaum, Demers
algorithm [44], or using a batch-oriented approach with lazy incremental updates. We would

16 Robert Paige

be seeking a sharper, more practical solution within our RETE-based inference strategy that
exploits the fact that a transformation preserves semantics.

Another major problem has to do with ensuring reliability of the program development
process. Currently, all transformations used within APTS preserve program semantics, but
this is only proved on paper outside the system. Since APTS is capable of unbridled produc-
tion of dangerously large quantities of code without any human intervention or oversight, the
absence in APTS of machine-assisted metalevel support to prove transformations correct is
a major deficiency that needs to be overcome. We expect that unfunded participants in the
area of computational logic from the University of Catania and the University of L’Aquila
will investigate how to verify our transformations by mechanical proof checking and theo-
rem proving. Recently, formal verification of our implementation design of Willard’s query
processor [24] has been achieved with paper and pencil in Cantali’s Thesis [14] at the Univer-
sity of Catania. Cantali’s immediate future plans are to pass his proofs through the ETNA
set theoretic mechanical proof checker.

Within the proposed research we plan to consider two other aspects of formal correct-
ness. First, we will derive APTS system components that implement pattern matching and
inference. Second, we plan to investigate various forms of rule induction to prove properties
of RSL inference and conditional rewriting rules that implement particular kinds of program
analysis and transformation.

The main objective of Track (2) research is to improve the speed of RSL execution in
scaled-up applications. Unless otherwise stated, our analysis will not include running time for
input and output methods. Slow speed results from levels of interpretive overhead, the fact
that RSL is fully specified in its own formalism, interfacing between modules, and the fact
that APTS is implemented in SETL2. Slow speed of SETL2 results from dynamic memory
allocation, dynamic typing, the high cost of redundant expressions, a model of computation
based on associative access, hidden copies, etc.

In order to speedup RSL execution, we will reconstruct the existing SETL-to-C translator
(written in RSL) into a robust compiler, called the Low SETL-to-C Accelerator, for the full
Low SETL language. Next, we will rewrite APTS in Low SETL, and compile it into C using
the SETL Accelerator. Based on previous experiments [12], this should speedup APTS by a
factor of 30.

We will also build a self-applicable partial evaluator for Low SETL, written in Low
SETL itself. RSL will be used to generate the Low SETL abstract syntax tree for the
partial evaluator. This would allow us to partially evaluate the Low SETL version of APTS
together with any RSL specification to produce a seamless Low SETL program equivalent
to the original RSL specification, but running about 10 times faster. We could then compile
this Low SETL specification into C using the Low SETL Accelerator to gain another factor
of 30 in speed. In this way we could speedup the RSL specification of the SETL Accelerator
by a factor of 300.

Since RSL syntax is fully specified in the RSL syntax formalism, the power of RSL can
sometimes be used to analyze and implement itself more succinctly than in SETL. In this
regard, we plan to replace the current APTS SETL modules for finite differencing and for
RSL compilation by more perspicuous RSL modules. We also plan to make RSL statically
typed, and to equip the RSL compiler with an RSL specification for type analysis. Partial
evaluation would then be used to undo the extra level of interpretive overhead that would
otherwise make this kind of bootstrapping unreasonably inefficient.

Partial evaluation [27] may be the most widely applicable and potentially practical trans-
formation around. It is based on a general software engineering principle in which highly
parameterized programs are concretized by simplification when a subset of the parameters
is fixed. It offers an attractive generic implementation strategy that traces a portion of the
computation for which expressions can be evaluated (for any datatype and operation in the
language). Consequently, partial evaluation must be implemented in full accordance with

A National Science Foundation Proposal 17

language semantics. A partial evaluator can turn an interpreter with fixed program input
into a compiled program, or it can turn a partial evaluator with fixed interpreter input into
a compiler. Amazingly, it can turn a partial evaluator with fixed partial evaluator input
into a compiler generator. Partial evaluation has been worked out for various programming
languages within the major language paradigms.

An off-line partial evaluator for a low-level subset of dynamically typed SETL2 has been
built with a finite, uniform, congruent division and polyvariant specialization based on the
method for flowchart languages found in [27]. It includes interprocedural analysis for control
flow, dataflow, and live variables, which is used for various optimizations including proce-
dure unfolding during specialization. So far the partial evaluator has been used successfully
to implement the First Futamura Projection on several interesting examples, including an
interpreter for a simple imperative language. Minor modification is underway to implement
the Second Futamura Projection, which is critical for automatic transformation of the APTS
interpreter into a compiler.

However, the partial evaluator has been implemented using a mixture of Standard ML
and SETL2 programs. We need to rewrite it more perspicuously as a mixture of RSL and
Low SETL specifications. The partial evaluator needs to be extended to handle modules (in-
cluding module variables of static extent). It also needs to be rewritten to partially evaluate
Low SETL. Finally, it should be said that designing a good self-applicating partial evaluator
for Low SETL may be extremely difficult, and alternative approaches known to work and
achieve the same ends will be taken if need be.

One possible alternative to get a good generating extension is to directly implement
a compiler generator (cogen, also known as generating extension generator) [32], whose
functionality is the same as the result of double self-application of a partial evaluator as
formulated by the Third Futamura Projection. This new approach avoids several technical
problems of self-applicating approach, which arise in statically typed languages such as Low
SETL. The relationship of a compiler generator and a partial evaluator is like that of a
compiler and an interpreter, so it is not too difficult to write a compiler generator by hand.

In addition, it is also difficult to design a good binding-time analysis, especially for
separately compiled modules (which is an open problem in itself). For the specific application
here, however, manually annotating and refining the binding-time of variables and operators
would be a practical alternative, giving the developers a finer control over the generated code.

3 Research Plan for Automated Software Manufacturing

Within the grant period we intend to turn the rudimentary ideas found in [12] and outlined
above into a practical technology offering a five- to tenfold improvement in productivity
for large-scale examples of over 100,000 lines of C. In order to accomplish the preceding
goals, we will combine data structure selection by real time simulation of a set machine
on a RAM [7, 36] and partial evaluation [27]. We plan to use the software components
described in the preceding section to automatically build other components that would be the
essential tools for a new practical program development technology. These new components
are described below.

Let PL be a program P implemented in language L. Let R denote RSL, and let S stand for
Low SETL implemented in the standard runtime environment of dynamically typed SETL2.
Using the transformational products in the project, including the SETL Accelerator written
in RSL (denoted by AR), the APTS system written in Low SETL (denoted by APTSS) and
the partial evaluator for Low SETL written in Low SETL (denoted by PES), we propose a
series of transformational experiments that, in scaledup applications, test the feasibility of
combining partial evaluation with our own transformations (sometimes in complex reflective
ways), test speedups predicted for transformed code, and test productivity improvement for
C implementations.

18 Robert Paige

From experience we have found that the runtime performance of any program PR is
roughly 10 times slower than the runtime performance of an equivalent S program PS .
We would like to test whether partial evaluation of RSL yields similar speedups. Based on
the experiments reported in [12] and unpublished independent experiments by Snyder (the
designer and implementer of SETL2), SETL2 programs PS should run 30 times slower than
equivalent C programs PC . (We assume here, that PS would have no hidden copies, or else
it might run many more times slower.) Our experiments [12] showed that the SETL-to-C
translator produced C codes that matched the 30-fold speedup observed in hand-coded C.
Since partial evaluation and data structure selection are completely independent, we plan
to test the hypothesis that PC will run 300 times faster than PR regardless of whether PC

is produced mechanically or by hand.
We will first apply AR to PES to give us a partial evaluator of Low SETL in C, i.e.,

PEC = AR(PES), which should be 30 times faster than PES . Next, we will apply PEC to
APTS and specialize it w.r.t. AR to give us a Low SETL Accelerator in Low SETL, i.e.,
AS = PEC(APTSS , AR), which should be 10 times faster than AR. Self-application of AS

produces an equivalent translator AC = AS(AS) from S to C that is written in C and should
run 300 times faster than AR.

The next set of experiments relate to generating a fast generic C read method. First, we
apply AC to the read method written in Low SETL, denoted by readS , to give us a generic
C read method, i.e., readC = AC(readS). To get a specialized version of the read method
for a fixed type signature sig (which includes a type assignment for the input variables and
subtype constraints), we first apply PEC to readS and sig to obtain a Low SETL version
of the specialized read routine for signature sig, i.e., read sig

S = PEC(readS , sig). We further
apply AC to read sig

S to get its C version equivalent, i.e., read sig
C = AC(read sig

S).
In a similar way, we can improve the speed for APTS. Applying AC to APTSS will yield

a C version of APTS, i.e., APTSC = AC(APTSS). We get a compiler version of APTS by
specializing PES w.r.t. APTSS using PEC , i.e., CAPTSS = PEC(PES ,APTSS). This can
further be converted to C, i.e., CAPTSC = AC(CAPTSS). Now, our transformations can
be done quickly using CAPTSC and AC , i.e., PS = CAPTSC(PR), PC = AC(PS) for any
program PR.

Among the tools generated for free from the three implemented tools PES , AR, and
APTSS , we believe that APTSC , CAPTSC , and even AC are likely to exceed 100,000 lines
of C. Furthermore, programs PC that result from compiling substantial RSL programs PR

into Low SETL programs PS by CAPTSC , which are further translated into C by AC , can
easily form codes of 100,000 lines or more.

A successful production of APTSC would, for the first time, yield C modules implement-
ing efficient forms of extremely difficult algorithms and subsystems that would be useful to
the programming language community. These include, (1) the fastest known preprocessing
algorithm for bottom-up multipattern tree matching [13], (2) an inference engine combining
our fast pattern matching algorithm with RETE-syle forward chaining [22] to implement
logic-based program analysis and computation, and (3) a bottom-up conditional rewriting
engine that makes use of our fast pattern matching algorithm to implement source program
transformation.

As a final application Willard’s Predicate Retrieval theory [53–55] deals with a large
database query optimization, and serves as an attractive scaled-up application for imple-
menting and verifying a difficult query compiler. Conceptually and technically difficult, an
RCS query compiler has resisted all previous attempts at an implementation. Neverthe-
less, we believe that our implementation plans will succeed. RCS queries expressed in High
SETL will be transformed into semantically equivalent programs in Low SETL using an RSL
specification WR. We expect the speed for this transformer to be considerably improved by
the transformation WC = AC(CAPTSC(WR)). The Accelerator AC will turn Low SETL
versions of these queries into C for execution.

A National Science Foundation Proposal 19

4 Results from Prior NSF Support

The present grant proposal stems from an ongoing feasibility study sponsored by the National
Science Foundation under the SGER program within the Software Engineering and Lan-
guages area of CISE/CCR. The ongoing NSF grant has award number CCR-9616993, fund-
ing amount $100,000., and support period September 1, 1996 to August 31, 1999. The
title is “Improving Productivity of Algorithm and System Implementation in Scaled Up
Applications”.

Results from the currently funded grant have been reported earlier in this proposal. They
include considerable progress in the design of Low SETL, in the implementation of a SETL
partial evaluator, and in the investigation of the hidden copy problem. Publications include
a POPL 97 paper [40] on the formal semantics and algorithmic development of a batch
reading method for Low SETL. This paper was coauthered by the Principal Investigator
and Ph.D. student Zhe Yang, and presented at POPL by Yang. As a result of this work
Yang won a prestigious BRICS fellowship to study last year with Olivier Danvy at the
University of Aarhus in Denmark. This year he has returned to NYU to work on his Thesis.

While at BRICS, Yang worked on the type encoding problem in languages with Hindley–
Milner type system. This work is partly motivated by the effort to type the generic read
routine for Low SETL [40]. This routine has its input arguments dependently typed; i.e.,
one of the arguments provides the type signature for the remaining inputs. Results of this
work were reported in an ICFP 98 paper [56] that was presented by Yang. The ICFP
98 paper formulated this kind of problem in terms of type-indexed values, and developed
several general approaches to program with them within a Hindley–Milner type system,
the basis for many popular functional languages such as ML. These approaches are based
on encoding types as higher-order polymorphic functions, whose types reflect the encoded
types themselves. For the general functional programming community, this paper provides
programming techniques for writing dependently-typed programs using commonly available
languages. We are also further convinced that a Hindley–Milner type system with some
variations can provide the type basis for Low SETL.

As an application of the above type encoding paper, we solved the problem of implement-
ing type-directed partial evaluation natively in ML [57]. Although native implementations
of type-directed partial evaluators have been reported to be several magnitudes faster than
meta-language implementations, previously, they were only implemented using untyped lan-
guages such as Scheme, which cannot guarantee runtime type safety.

Another publication [24], coauthored with Ph.D. student Deepak Goyal, demonstrated
how the Low SETL type system could actually be used to improve the runtime complexity
of Willard’s database query processing method. This work is unusual in the sense that a
difficult algorithmic improvement was not obtained by the usual combinatorial arguments
but by algebraic and logical reasoning using theoretical programming language concepts.
Goyal has given invited talks on this work at SUNY Albany, the University of Copenhagen,
and the University of Aarhus. As noted earlier, these also inspired a Bachelor’s Thesis in the
area of Mechanical Verification at the University of Catania in Italy. This year Goyal and
I coauthored another paper [25] on how to avoid hidden copy operations in an imperative
language with large datatypes and copy/value semantics with a lazy copy strategy, such as
Low SETL. Goyal presented the work at the Static Analysis Symposium 98 (which took
place in Pisa, Italy), and gave invited talks at several universities in Italy.

Goyal is the unique holder of the prestigious Dean’s Dissertation Fellowship in the Com-
puter Science Department at NYU, so he will not need academic support for next year.
Zhe will be funded by an ONR grant that partly overlaps with the current proposal. This
proposal seeks funding for one Ph.D. student in addition to Goyal and Yang for a total
of three students working full-time on the project. The principal investigator will also be
on sabbatical next year, and will remain at NYU in order to make good progress with the
ambitious work proposed here.

20 Robert Paige

5 Conclusion
There is compelling experimental evidence that SETL Accelerator AC will compile programs
PS into C codes PC whose performance is comparable to hand-coded C for small examples.
We also believe that the performance of C codes PC produced by our methods will actually
grow in competitiveness with hand-coded C as the number of source C lines grow. If this
is confirmed, then our automated software manufacturing technology may not only work
for scaled-up applications, but may allow us to build high performance systems that cannot
even be built under current technology.

An important feature of this technology is the natural way in which it can evolve as each of
its separate basic components (PES , AR, or APTSS) is improved. Improvements are of two
kinds, both of which lead to a merger of Tracks (1) and (2) as part of a bootstrapping process.
One kind of improvement has to do with progressive elevation of the partial evaluation
language, the Accelerator source language, and the implementation languages of PES and
APTSS from Low SETL to High SETL to either SQ2+ or RSL. Another kind has to do
with combining the logic-based relational style of RSL with the functional set-based style of
SQ2+ into a single very high-level specification language.

Appendix A: Transcript of an APTS Derivation
This section illustrates our specification languages and transformational methodology by
tracing through an actual transcript of mechanical program development in APTS. The
transcript demonstrates how a formal specification of live code analysis (for an imperative
well structured programming language), written in only a few lines of SQ2+, can be turned
automatically into a C program of several hundred lines with worst-case running time and
space linear in the input space. We also show how live code analysis can be specified in RSL,
and used as part of the SQ2+-to-C compiler.

The SQ2+ specification of live code analysis appears pretty-printed by APTS just below:
program useless;
1 assume oneone (instof);
2 assume onemany (iuses);
3 assume manyone (compound);
4 assume disjoint (range instof, range compound);
5 read (instof, usetodef, iuses, compound, crit);
6 print (clfp (crit, live + instof [usetodef [iuses [live]]] +

compound [live], live));
end program;

where crit is a set of initial live statements (read and print), iuses is a one-to-many
map from statements to uses of variables, usetodef is a many-to-many map from uses to
definitions (left-hand-side occurrences of variables) of variables that can reach these uses
along definition-clear program paths, instof is a one-to-one map from definitions to their
enclosing statements, and compound is a many to one map from statements to immediately
enclosing compound statements (i.e., if-statements and while loops). Assumptions are given
to improve the quality of the compiled code. Image set expression f [s] yields the image of
set s under binary relation f ; i.e., {y | ∃x ∈ s : [x, y] ∈ f}. The conditional least fixed-point
expression clfp(. . .) computes the smallest set live (with respect to set containment) that
includes set crit and satisfies equation
live = live ∪ instof [usetodef [iuses [live]]] ∪ compound [live].

For example, in the following program,
program test;
read(b);
if c2 then c := y;
elseif c3 then a := y;
end if;
print(a);

end program;

A National Science Foundation Proposal 21

let statements print(a) and read(b) belong to set crit. Then all but assignment c := y
would be live.

Based on the SQ2+ type inference system described in [7], the APTS inference engine
computes types for each program expression. It also computes other program properties, such
as monotone expressions, and bound and free variables of expressions. These properties are
all stored as relations in the the APTS PDB (Program Database).

The binary type relation is defined over the domain of program terms (the first com-
ponent) and s-expressions representing types (the second component). The binary relation
mono (see below) is defined over program terms. RSL code for two of the inference rules used
to compute types are shown below,

match(%expr, .x%) | null(z, type(%expr, .x%, z)) ->
bind(.t, newatom(t)) and type(%expr, .x%, .t);

match(%expr, .x + .y%) | type(%expr, .x%, .t) ->
type(%expr, .x + .y%, .t) and type(%expr, .y%, .t);

The first rule states that for every program point p in the SQ2+ specification with syntactic
category expr (i.e., for every occurrence of an expression) such that type is not defined
for the term r stored at p, create a new type variable t, and make t the type for r (i.e.,
store pair [r,t] in the type relation). The second rule is more complicated. It states that
for every program context p1+p2, where p1 and p2 are program points containing terms t1
and t2 respectively, if the type relation contains pair [t1,t], then perform the following
actions. Obtain a most general unifier t’ of t and the types of t2 and t1+t2 if these types
already exist, and let t’= t otherwise. Then store pairs [t1,t’], [t2,t’], and [t1+t2,t’]
in relation type after deleting each of the types for t1, t2, and t1+t2 that may exist.

Inference rules in APTS may be performed in any order. There is a notion of “safe”
rules (under a closed world assumption) to allow for limited forms of negation and built-in
predicates, and a semantics similar to the logic databases found in [51]. More details about
the inference rules and how they are implemented in APTS can be found in [6].

The conditional rewriting transformation nminfp can turn the functional live code analy-
sis specification above into a simple imperative program that computes the conditional least
fixed-point by dominated convergence. The transformation is displayed in APTS using the
“help” feature.
>:help nminfp;
lhs code to be matched

print (clfp (.w, .s + .k, .s));
rhs replacement code

.x := .w;
while exists .z in (.k - .x) loop

.x with := .z;
end loop;
print (.x);

pattern expansion code is
readvar (.x) and
genvar (.z) and
subst (.k, .s, .x)

database action code is
type(.x,[set, .t]) and
type(.z, .t) and
type(%expr,.k-.x%, [set, .t])

enabling predicate
mono (% expr, .s + .k %, .s) and
type (.s, [set, .t])

This rule applies to any program point that is matched by the left-hand-side pattern and
that satisfies the enabling predicate. Nonlinear pattern matching is carried out between
the left-hand-side pattern (essentially a sentential form in the SQ2+ grammar) and the

22 Robert Paige

program. Variables preceded by a period are pattern variables that match program points.
For matching to succeed, all occurrences of the same pattern variable in a pattern must
match the same terms.

An environment env that maps pattern variables to program points is created as a side
effect of matching. Matching the left-hand-side of nminfp with the SQ2+ specification results
in the following environment:

env(.w) = crit
env(.s) = live
env(.k) = instof [usetodef [iuses [live]]] + compound [live]

Next, the enabling predicate pattern is instantiated relative to environment env . Pred-
icate mono(live + instof[usetodef[iuses[live]]] + compound[live], live) and
type(live, [set, .t]) which results from substitution, must then be matched against
the mono and type relations stored in the PDB. That is, the pair:

[live + instof [usetodef [iuses [live]]] + compound [live], live]
must be stored in relation mono, and relation type must store pair [live, [set, τ]]

for some s-expression τ that represents a type. Both conditions are satisfied. Since variable
live has type [set t5], the environment is extended so that env(.t) = t5.

At this point the environment is extended further by executing the pattern expansion
commands. Command readvar(.x) requires the user to supply an identifier from the termi-
nal. In response we will supply the string livest, after which env(.x) = livest. Command
genvar(.z) creates a new identifier automatically. In this case the system supplies x1, after
which env(.z) = x1. Command subst(.k, .s, .x) is a general substitution mechanism
that replaces all occurrences of env(.s) in env(.k) by env(.x). In this case, substitution
will result in env(.k) = instof[usetodef[iuses[livest]]] + compound[livest].

The right-hand-side replacement code in the nminfp transformation can now be instan-
tiated relative to environment env , and used to replace the SQ2+ subtree matched by the
left-hand-side. Finally, the database action code indicates how to update the type relation
in the PDB for the new terms that are introduced by tree replacement. The High SETL
program just below results from dominated convergence,
program useless; -- Assumptions elided
5 read (instof, usetodef, iuses, compound, crit);
6 livest := crit;
7 while exists x1

in instof [usetodef [iuses [livest]]] +
compound [livest] - livest loop

8 livest with := x1;
end loop;

9 print (livest);
end program;

The SQ2+-to-C translator proceeds to the next phase of compilation, which applies finite
differencing (see [20, 21, 33, 48] for related work). In order to expose opportunities for finite
differencing and also to regularize the program into a simplified form for which a limited
number of finite differencing rules can have wide utility, the translator turns the program into
a normal form. This is done by applying a group of conditional rewriting rules exhaustively
bottom-up until there is no further change. Consequently, line 7 is replaced by the following
equivalent code:

7 while exists x1
in {x2 in instof [usetodef [iuses [livest]]]

+ compound [livest] | x2 notin livest} loop

The algorithm used to implement group transformations is based on the incremental linear
pattern matching preprocessor found in [13]. Regardless of the number of rewriting trans-
formations belonging to a group, matching can proceed bottom-up so that the exact subset

A National Science Foundation Proposal 23

of individual rules whose left-hand-sides match a given program subtree can be computed in
unit time, and presented in linear time in the subset size. Efficient incremental preprocessing
of groups with respect to rule addition and deletion is also supported.

Next, the finite differencing transformation automatically detects invariants of the form
x = e (where e is a program expression and x is a new variable uniquely associated with e)
that should be maintained and exploited in order to avoid the costly repeated calculation
of the truth set at the top of the while-loop at line 7. The following invariants are detected
automatically by bottom-up analysis of the truth set expression; their left-hand-side variables
are all supplied by the user:
uses = iuses [livest]
defs = usetodef [uses]
livedf = instof [defs]
livecf = compound [livest]
liveall = livedf + livecf
work = {x in liveall | x notin livest}

After the six invariants are detected, a stream processing transformation based on Gold-
berg and Paige [23] inserts code that aims to establish the invariants on entry to the while
loop using a minimal number of loops. In this case stream processing generates the code
appearing on lines 7 through just before line 29 below. A chain rule is used to perform the
necessary bookkeeping operations needed to reestablish these invariants just before they are
falsified by the modification to livest at line 45. Consequently, the costly truth set expression
at the top of the while loop is made redundant, and is replaced by variable work. The Low
SETL program that results from finite differencing appears just below.
program useless; -- Assumptions elided
5 read (instof, usetodef, iuses, compound, crit);
6 livest := crit;
7 livecf := { };
8 livedf := { };
9 defs := { };
10 uses := { };
11 for x3 in livest loop
12 if compound (x3) notin livecf then
13 livecf with := compound (x3);

end if;
14 for x5 in iuses { x3 } loop
15 for x9 in usetodef {x5} | x9 notin defs loop
16 livedf with := instof (x9);
17 defs with := x9;

end loop;
18 uses with := x5;

end loop;
end loop;

19 work := { };
20 liveall := { };
21 for x11 in livedf loop
22 if x11 notin livest then
23 work with := x11;

end if;
24 liveall with := x11;

end loop;
25 for x12 in livecf loop
26 if x12 notin livest then
27 work with := x12;

end if;
28 liveall with := x12;

end loop;
29 while exists x1 in work loop

24 Robert Paige

30 if compound (x1) notin livecf then
31 if compound (x1) notin livest then
32 work with := compound (x1);

end if;
33 liveall with := compound (x1);
34 livecf with := compound (x1);

end if;
35 for x6 in iuses {x1} loop
36 for x9 in usetodef {x6} | x9 notin defs loop
37 if instof (x9) notin livest then
38 work with := instof (x9);

end if;
39 liveall with := instof (x9);
40 livedf with := instof (x9);
41 defs with := x9;

end loop;
42 uses with := x6;

end loop;
43 if x1 in liveall then
44 work less := x1;

end if;
45 livest with := x1;

end loop;
46 print (livest);
end program;

Finite differencing often causes intermediate invariants and code in the untransformed pro-
gram to become useless. The next step of the SQ2+-to-C translator performs a dead code
analysis and elimination transformation. First inference rules are used to compute control
flow, data flow, types, and an abstraction of the program that allows live code to be calcu-
lated. These consist of around three pages of RSL specifications, including the following two
axioms to determine the initial live statements:
match(%statement, print(.x);%) -> live(%statement, print(.x);%);
match(%statement, read(.x);%) -> live(%statement, read(.x);%);

Next, the following two inference rules
-- a use of variable z is live if it occurs free in expression y
-- that is reached from a definition of z along a path clear of
-- other definitions to z

reach(.z, .y) and freevar(.y, .z) -> live(.z);
-- a program component that encloses a live subcomponent is also live

live(.x) and neq(pred(.x), nil) -> live(pred(.x));

are used to determine those program statements that contribute either directly or indirectly
(via dataflow and control flow) to the print statement at line 46. This step is carried out in
logic programming fashion by calculations involving only relations in the PDB and without
reference to the program syntax tree. Analysis determines that statements at lines 10, 19,
42, and 44 are dead. These statements are removed from the program, and control structures
are subsequently simplified using RSL conditional rewriting rules.

The final transformation, which makes use of concepts found in [45], but relies mainly on
the type/subtype inference mechanism of [7], implements all set and map datatypes using
array and list data structures. This transformation rests on the discovery of finite universal
sets, called bases, to be used for data sharing and for creating aggregate data structures
that serve to simulate associative access (e.g. x in s) in real time; i.e., each such access
is implemented by a unit time array or pointer access. The final C code with 342 labeled
statements runs in time linear in the size of the usetodef relation. Similar to the benchmarks

A National Science Foundation Proposal 25

reported in [12], it runs 30 times faster than the SETL2 program running under Snyder’s
“stlx” interpreter, which indicates performance comparable to good hand-coded C.

References

1. F. Bancilhon: Naive evaluation of recursively defined relations. In On Knowledge-Base
Management Systems, M. Brodie and J. Mylopoulos (Eds.). McGraw-Hill, 165–178, 1986.

2. R. Bayer: Query evaluation and recursion in deductive database system, Unpublished
Manuscript, 1985.

3. B. Bloom: Ready simulation, bisimulation, and the semantics of CCS-like languages.
Ph.D. thesis, Massachusetts Institute of Technology, Sept. 1989.

4. B. Bloom and R. Paige: Transformational design and implementation of a new efficient
solution to the ready simulation problem. Science of Computer Programming, 24(3),
189–220, 1995. http://cs.nyu.edu/cs/faculty/paige/papers/readysc.ps.

5. P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual:
Centaur: the system. Rapports de Recherche 777, INRIA, 1987.

6. J. Cai: A language for semantic analysis. Technical Report 635, Courant Institute, New
York University, 1993.

7. J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg: Type transformation and
data structure choice. In Constructing Programs From Specifications, B. Möller, (Ed.).
North-Holland, Amsterdam, 126–164, 1991.
http://cs.nyu.edu/cs/faculty/paige/papers/subtype.ps.

8. J. Cai and R. Paige: Binding performance at language design time. In Proc. Fourteenth
ACM Symp. on Principles of Programming Languages, 85–97 1987.

9. J. Cai and R. Paige: Program derivation by fixed-point computation. Science of Com-
puter Programming, 11:3, 197–261, 1989.
http://cs.nyu.edu/cs/faculty/paige/papers/fixpoint.ps.

10. J. Cai and R. Paige: Languages polynomial in the input plus output. In Algebraic
Methodology and Software Technology, M. Nivat, C. Rattray, T. Rus, and G. Scollo,
(Eds.,) Workshops in Computing, Springer-Verlag, Conference Record of the Second
AMAST, 287–302, 1992.

11. J. Cai and R. Paige: Using multiset discrimination to solve language processing problems
without hashing. Theoretical Computer Science, 145(1–2), 189–228, 1995.
http://cs.nyu.edu/cs/faculty/paige/papers/hash.ps.

12. Cai J. and R. Paige: Towards increased productivity of algorithm implementation. In
Proc. ACM SIGSOFT, 71–78, 1993.
http://cs.nyu.edu/cs/faculty/paige/papers/prod.ps.

13. J. Cai, R. Paige, and R. Tarjan: More efficient bottom-up multi-pattern matching in
trees. Theoretical Computer Science, 106(1), 21–60, 1992.
http://cs.nyu.edu/pub/tech-reports/tr604.ps.Z.

14. A. Cantali: Using ETNA to prove correctenss and complexity of a linear time implemen-
tation of a subset of Willard’s RCS. Bachelor’s thesis, University of Catania, Catania,
Italy, 1997.

15. C.-H. Chang and R. Paige: From regular expressions to DFA’s using compressed NFA’s.
Theoretical Computer Science, 178(1–2), 1–36, 1997.
http://cs.nyu.edu/cs/faculty/paige/papers/cnnfa.ps.

16. P. Cousot and R. Cousot: Constructive versions of Tarski’s fixed-point theorems. Pacific
J. Math., 82(1), 43–57, 1979.

17. H. Curry: Modified basic functionality in combinatory logic. Dialectica, 23, 83–92, 1969.
18. V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang: Programming environments based

on structured editors: The mentor experience. In Interactive Programming Environ-
ments. McGraw-Hill, 1984.

26 Robert Paige

19. W. Dowling and J. Gallier: Linear-time algorithms for testing the satisfiability of propo-
sitional Horn formulae. J. Logic Programming. 1(3), 267–284, 1984.

20. J. Earley: high-level iterators and a method for automatically designing data structure
representation. J. of Computer Languages, 1(4), 1976, 321–342.

21. A. Fong and J. Ullman: Induction variables in very high-level languages. In Proc. 3rd
ACM Symp. on Principles of Programming Languages, 104–112, Jan. 1976.

22. C. Forgy: RETE, a fast algorithm for the many patterns many objects match problem.
Artificial Intelligence, 19(3), 17–37, 1982.

23. A. Goldberg and R. Paige: Stream processing. In Proceedings of the ACM Symposium
on LISP and Functional Programming, ACM, 53–62, 1984.

24. D. Goyal and R. Paige: The formal reconstruction and improvement of the linear time
fragment of Willard’s relational calculus subset. In Algorithmic Languages and Calculi.
R. Bird and L. Meertens (Eds.) Chapman & Hall, 382–414, 1997.
http://cs.nyu.edu/phd_students/deepak/lrcs.ps.

25. D. Goyal and R. Paige: A new solution to the hidden copy problem. In Proc. 5th In-
ternational Static Analysis Symposium. G. Levi (Ed.) LNCS 1503, Springer, 327–348,
Sept. 1998. http://cs.nyu.edu/phd_students/deepak/copy.ps.

26. R. Hindley: The principal type-scheme of an object in combinatory logic. Trans. Amer.
Math. Soc., 146, 29–60, 1969.

27. N. Jones, C. Gomard, and P. Sestoft: Partial Evaluation and Automatic Program Gen-
eration. Prentice-Hall, 1993.

28. J. Keller and R. Paige: Program derivation with verified transformations—a case study.
Comm. on Pure and Applied Mathematics, 48 (9–10), 1053–1113, 1996.
http://cs.nyu.edu/cs/faculty/paige/papers/ltmjform.ps.

29. P. Klint: The ASF+SDF meta-environment user’s guide, Version 26. Technical report,
Centrum voor Wiskunde en Informatica, 1993.

30. D. Knuth: The Art of Computer Programming. Vol. 3, Addison-Wesley, 1968–1972.
31. S. Koenig and R. Paige: A transformational framework for the automatic control of

derived data. In Proc. 7th Intl. Conf. on VLDB, 306–318, Sept. 1981.
32. J. Launchbury and C. K. Holst: Handwriting cogen to avoid problems with static typ-

ing. In Draft Proceedings, Fourth Annual Glasgow Workshop on Functional Program-
ming. C.K.H.R. Heldal and P. Wadler (Eds.) Workshops in Computing, Skye, Scotland,
Springer-Verlag, 210–218, 1991.

33. Y. Liu: Principled strength reduction. In Algorithmic Languages and Calculi. R. Bird
and L. Meertens (Eds.) Chapman & Hall, 357–381, 1997.

34. R. Paige: Formal Differentiation. UMI Research Press, 1981.
35. R. Paige: Programming with invariants. J IEEE Software, 3(1), 56–69, 1986.
36. R. Paige: Real-time simulation of a set machine on a RAM. In Computing and Informa-

tion. N. Janicki and W. Koczkodaj (Eds.). Vol. II of ICCI 89, Canadian Scholars’ Press,
Toronto, 69–73, May 1989.
http://cs.nyu.edu/cs/faculty/paige/papers/realtime.ps.

37. R. Paige: Viewing a program transformation system at work. In Programming Language
Implementation and Logic, M. Hermenegildo and J. Penjam, (Eds.), LNCS 844, Springer-
Verlag, Berlin, 5–24, Sept. 1994.
http://cs.nyu.edu/cs/faculty/paige/papers/viewing.ps.

38. R. Paige and F. Henglein: Mechanical translation of set theoretic problem specifications
into efficient RAM code-a case study. Journal of Symbolic Computation, 4(2), 207–232,
1987.

39. R. Paige, R. Tarjan, and R. Bonic: A linear time solution to the single function coarsest
partition problem. Theoretical Computer Science, 40(1), 67–84, 1985.

40. R. Paige and Z. Yang: high-level reading and data structure compilation. In Proc. 24th
ACM Symp. on Principles of Programming Languages, 456–469, 1997.
http://cs.nyu.edu/phd_students/zheyang/papers/read.ps.

A National Science Foundation Proposal 27

41. Refine user’s guide version 3.0, 1990.
42. J. Reif and H. Lewis: Symbolic evaluation and the global value graph. In Proc. 4th

Annual ACM Symp. on Principles of Programming Languages, 104–118, 1997.
43. T. Reps and T. Teitelbaum: The Synthesizer Generator: A System for Constructing

Language-Based Editors. Springer-Verlag, New York, 1989.
44. T. Reps, T. Teitelbaum, and A. Demers: Incremental context-dependent analysis for

language-based editors. ACM TOPLAS, 5(3), 449–477, 1983.
45. J. Schwartz: Automatic data structure choice in a language of very high-level. CACM,

18(12), 722–728, 1975.
46. J. Schwartz: Optimization of very high-level languages, Parts I, II. J. of Computer

Languages, 1(2–3), 161–218, 1975.
47. J. Schwartz, Dewar, R., Dubinsky, E., and Schonberg, E.: Programming with Sets: An

Introduction to SETL. Springer-Verlag, New York, 1986.
48. D. Smith: Kids—a semi-automatic program development system. IEEE Transactions on

Software Engineering, 129–136, 1990.
49. K. Snyder: The SETL2 programming language. Technical Report 490, Courant Insiti-

tute, New York University, 1990.
50. A. Tarski: A lattice-theoretical fixpoint theorem and its application. Pacific J. of Math-

ematics, 5, 285–309, 1955.
51. J. Ullman: Principles of Database and Knowledge-Base Systems. Computer Science

Press, 1988.
52. E. van der Meulen: Incremental Rewriting. Ph.D. thesis, CWI, Amsterdam, The Nether-

lands, 1994.
53. D. E. Willard: Predicate Retrieval Theory. Tech. Report 83-3, SUNY Albany, USA,

1983.
54. D. E. Willard: Quasi-linear algorithms for processing relational data base expressions. In

Proceedings of the 9th ACM Sigact-Sigmod-Sigart Symposium on Principles of Database
Systems, 243–257, 1990.

55. D. E. Willard: Applications of range query theory to relational data base join and
selection operations. J. Computer and System Sci., 52, 157–169, 1996.

56. Z. Yang: Encoding types in ML-like languages. In P. Hudak and C. Queinnec, eds.,
Proceedings of the 1998 ACM SIGPLAN International Conference on Functional Pro-
gramming (Eds.), Baltimore, Maryland, USA, ACM Press, 289–300, 1998.

57. Z. Yang: A native ML implementation of type-directed partial evaluation. In Proceedings
of the 1998 APPSEM Workshop on Normalization by Evaluation, NBE ’98. O. Danvy
and P. Dybjer, (Eds.). Göteborg, Sweden, May 8–9, 1998, NS-98-1 in BRICS Notes
Series, BRICS, Department of Computer Science, University of Aarhus, May 1998.

Part II

Robert Paige: Brother, Friend, Colleague

Bob Paige with his brother Gray (fall 1996)

A Song for My Brother

Gary D. Paige

Department of Neurobiology and Anatomy, University of Rochester,
601 Elmwood Ave., Box 603, Rochester, NY 14642, USA
gary_paige@urmc.rochester.edu

I am grateful to all of you who have contributed to this book in honor of my brother, Robert
Paige. I remain deeply touched by the impact that his career and his life has had among
his colleagues. There is no doubt that he would have been flattered, humbly surprised,
and enormously grateful for this effort. I have put together some personal recollections and
thoughts relevant to our familial lives, and which might provide some additional insight into
who Rob was and what he meant to each of us in our own ways. It is in the form of four
sections, much like a sonata or concerto. I’ll explain that shortly. Oh, yes, and I will refer to
my brother as Rob, not Bob, just as I have since shortly after birth; such is the dynamic of
family relations.

Early Foundations

Sibling relationships are special at many levels. The most obvious and unique attribute is
that my brother and I shared half our genes. The only way to beat that ratio is to have
been identical twins. Unlike twins, however, there is no understood relationship between
how shared and unshared genes play out, interact, and produce the people we become.
Further, we were born into the same family, environment, and culture, though I followed by
five years (enough to make a difference). Such are the “nature” and “nurture” attributes of
brotherhood. Without speculating further, I can tell you that we shared many elements of
our being, including mutual abilities, tastes, talents, and foibles, as well as such intangibles
as political, religious, and sociological outlook. We also differed in recognizable ways. Indeed,
I have friends and colleagues who look more like Rob than I do.

Being far apart in age, I was more an early mascot than a competitor, and that lack
of sibling rivalry held for the duration of our lives. We generally reveled in our respective
paths, accomplishments, and nuances—playing with them and discussing their meaning and
implications. The age gap also meant that we were often affected differently by the same
events.

Growing Up

Early events shape and reflect our outlook and character, not always in predictable ways.
We spent our initial years in a post-World War II suburb of New York, ensconced into a New
Deal political and social environment heavily imbued with the predominant liberal Jewish
movement characteristic of much of the community. In 1960, however, the family moved to
Phoenix when Rob was at the vulnerable age of 13. The above cultural attributes turned
upside down, and the transition was difficult, to say the least. After four years we moved to
California with no regrets. Rob spent a semester or two at Arizona State University before
transferring to Occidental College in Los Angeles, majoring in chemistry of all things, though
the seeds of computer science were clearly planted there. By 1967, Rob had experienced
enough of the Southwest, and headed back—and in fact, home—to New York where he had

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 31–34.
c© 2008 Springer.

32 Gary D. Paige

always remained in heart and mind despite a few forays away. That first move hurt, and in
my view deeply affected his outlook thereafter.

Let me back up for a moment. Before we left New York in 1960, Rob had discovered
music, taking up the trumpet and rapidly advancing in ability, reflecting an inherent talent.
He proved to be a fine performer and even quite the “ham”. But music was much more
than that. Music provided an expressive outlet, sure, but also a very personal creative
outlet, a source of peace and introspection, and indeed, something of a sanctuary. Music
is a fundamental language that in those so sensitized, bypasses cortex and heads directly
to more emotional and primordial attributes of the mind and brain. I say all this with
some conviction, because it would not be long before I, too, would discover my own version
of music in Phoenix, having taken up a complementary instrument, the trombone. Here
marked an interesting difference between us. While Rob loved to perform, whether for family,
friends, schoolmates, or a microphone, I, in contrast, approached seizure threshold at the very
thought, stifled by nearly pathological shyness. Oddly, as we later entered the mainstream
of our professional careers, this difference dissipated as we converged closer to some middle
ground. That synergy remains mysterious.

Late in our Phoenix period, Rob entered a regional music contest and won a scholarship
to attend the National Music Camp at Interlochen, Michigan, for the summer of his senior
year of high school. That was a major positive turning point for him. By the following year, I
had done sufficiently well that, with his encouragement, we attended the camp together. The
experience was monumental for me as well. As a humorous aside, that summer witnessed
a major strike in this country’s air carriers, and so imagine Rob and I (all of 17 and 12)
traveling by Greyhound bus for four days to Chicago and then by train to reach Interlochen.
It is a good thing we were not kidnapped or otherwise eaten by trolls. But what an adventure,
as was the trip home by train. I still recall sharing the Rockies by sunrise together. After that
came a key shift in our relationship. The following year I attended camp alone. Rob was off
to college and we were, for the first time and thereafter, separated. However, Rob remained
closely in the loop for me. He had discovered earlier that Interlochen had established an arts-
oriented high school in the early 1960s, too late for him, but perhaps not for me. With his
insight and encouragement, I applied, but only after some understandably agonizing chats
with our parents. I would be effectively leaving home at 14, and would require a substantial
scholarship in order for the family to afford it all. The gambit ultimately worked out, and
two weeks after returning from camp I once again headed east. I will forever attribute this
most extraordinary and influential portion of my life to Rob for his efforts on my behalf. I
told him so, in person, just two weeks before his death.

Adult Life

I must begin this movement where the last one left us—with music. Keep in mind that we
were separated by over 2000 miles. Nevertheless, our intense passion for music secured a
continued bond. In particular, we both relished jazz. Miles Davis was a mutual hero, and
on my visits home, we wasted no time enjoying the clubs of Los Angeles to witness the best
and most exhilarating live club-dates for all manner of jazz, including Miles. That habit
would continue for over a dozen years, through his move back to New York, and through
mine to Irvine and then to Chicago. No matter where we were, we traded visits and headed
to the clubs, eventually to include Chicago blues in the mix. By the way, the title of this
essay/sonata is taken from a similar one by the famous jazz artist and composer Horace
Silver.

What happened to our own musical outlet—our instruments? Well, we both ultimately
quit. By late college or a bit beyond, neither of us could play as well as we could when we were
13. That proved fatally painful. Our mind’s ears could not be replicated in kind. The same,
I have learned, applies to champion ice skaters, and many others who move on to alternative
careers and cannot maintain the ability despite the passion and history behind it. Rob later
tried Cello, but ultimately that, too, went by the wayside. We were both condemned to

A Song for My Brother 33

being most enthusiastic of fans, and that change affected our artistic outlook as well. No
longer focused by our instruments, we took a shine to all the arts, and frequently visited art
museums and galleries, attended theater, and the ballet—just about anything we could sink
our teeth into that reflected the fine arts.

Oh, did I mention food? We shared a rather adventurous yen for dining. Those visits
noted above included all manner of ethnic excursions, the more exotic and eclectic the better.
There were only a few misses. We did not order seconds on the “half sheep head” at a cutesy
place in Little Italy, nor the sea cucumbers in nearby Chinatown—the things resemble that
which jumps out the end of a caterpillar, having stepped on the opposite side; just imagine
huge ones. Well, most efforts were rewarded by terrific culinary experiences and the events
and chats associated with them. All provided fond memories. Yes, we seemed bound by
music, food, and conversation—not a bad combination, eh? Did genes have influence? I
rather think so.

After all the above, I finally arrive at our careers. Both of us landed firmly within the
academic cocoon—better to preserve our sensitive and idealistic natures, and to provide
options as to how we spend our time and with whom and when. The creative element of
research and writing proved directly related to our beloved music. What might interest you
is how often conversation focused on style as well as substance across our different fields.
He was forever curious about the National Institutes of Health (NIH) system of checks
and balances, peer review, and boundaries of ethical behavior encoded in how biomedical
research is conducted and funded in the United States. I must admit, the NIH system,
with all its peculiarities, has proven to be a remarkable success for over half a century.
The grant application mill is indeed stressful, but in fact it does provide a rational critical
structure that ensures some semblance of fairness and openness (transparency). Nevertheless,
none of this trumps human nature and its ramifications. The system just filters it all a
bit. Another element that Rob always admired was the process and implementation of
experiments. The elegance and arguments entwined with theory, computation, and modeling
can be compelling, and yet something important is missed without testable implications
backed by tangible experiments. The outcome can bring a house of cards tumbling down,
a school of thought trashed, albeit not without anguish and squawking by true believers.
In the end, the scientific method has sharp teeth, and the truth tends to win in time. It
is humbling. I think Rob saw this, and the concept resonated with him. He lamented that
there was insufficient experimentation in computer science. I wonder what you think of all
this.

Somewhere in the mid-1990s we had the idea of witnessing each other present our work to
our respective audiences. We managed to find a time for Rob to visit the Computer Science
Department at Rochester the same week I gave a Grand Rounds presentation in Neurology.
What a treat for both of us! At last, as adults, we shared our respective professional lives
in real time, on stage, as a member of the audience, or, perhaps more realistically, as a fly
on the wall. We so enjoyed that visit, but also learned from the experience.

As to personal life, we both married within a few years, and both had two children. We
lived far apart, and regrettably could not share the kind of childhood family interplay that
we ourselves experienced early in life. There were occasional holiday visits back and forth,
but clearly not enough of them. And ultimately, it became too late.

Illness

I learned of Rob’s illness by phone while in Seattle visiting the University of Washington.
We spoke about the early pathology report and the options that would ultimately lead to
a definitive diagnosis of mesothelioma. This was not really the beginning of illness, but
just the diagnosis; the condition no doubt lurked for years, stimulated by a shockingly
unlikely and prolonged exposure to asbestos. Over the next roughly three years, we would
speak frequently, and visit during some of his hospitalizations related to procedures. We also
visited on holidays more so than before. Time was our enemy.

34 Gary D. Paige

I was the “doctor in the family”, a losing role that I hated. Like the man who knew too
much of Hitchcock fame, I knew too much. Each signpost of progression or treatment out-
come was a harbinger for the next for me. Worse, I was incapable of offering the superhuman
task that we all craved—a means of saving Rob. I could at best offer occasional guidance
and opinion, and perhaps catalyze some useful contacts. Arguably the most personal con-
tribution once again reflected our most enduring and significant bond—music. Early on,
during a visit in Sloan Kettering, I gave him a portable CD player and a half dozen selected
discs, something that could be an ever-present comfort, offering some semblance of peace,
comfort, and yes, distraction from all the rest. Without a word exchanged, he arose from
bed, complete with tubes and chest drains, and sat on my lap to share a hug and some tears.
But every time I gave a squeeze he would yelp in pain, as somehow I always managed to
aggravate a delicate spot over a drain, and then we laughed out loud anyway.

I had dreamed of a future when Rob and I might alternate family visits with occasional
jaunts as a twosome to share our musical passions and our yen for conversation over spooky
food. Over the last few years, Rochester has developed a world-class jazz festival that I
have voraciously consumed regularly. I can sense Rob’s presence in my mind. I cannot help
imagining—we would have laughed, cried, conversed, and ate, while reveling in the varied
performances for hours, and over days.

Gary D. Paige
Rochester, May 2007

Robert Paige: Researcher and Teacher

Harry Mairson

Computer Science Department, Brandeis University, Waltham, MA 02254, USA
mairson@brandeis.edu

Bob Paige, a professor of computer science and a leading researcher in the area of program-
ming languages and transformational programming, died October 5, 1999, at his home in
Manhattan. He was 52 years old.

Bob had mesothelioma, a type of cancer, which he fought courageously and successfully
for several years.

For the last fourteen years of his life, he was a professor in the Department of Computer
Science at New York University. He also served on the faculty at Rutgers, Purdue, Wisconsin,
Yale, the University of Copenhagen and the University of Aarhus in Denmark.

Robert Paige was born in Brooklyn in 1947. He was an accomplished musician in his
youth, showing great promise as a trumpet player, but turned down a professional orches-
tral career to attend Occidental College, where he earned his B.S. degree in 1968. His sub-
sequent work in the emerging computer industry was followed by joining NYU in 1969 as
a staff member, where he built one of the first time-sharing systems for multiuser main-
frame computers. This project led him to a research career in computer science; he became
a graduate student at NYU, and earned his Ph.D. in 1979.

The fundamental theme of Paige’s research was automatic programming of complex com-
puter systems. These systems typically include many clever “hand crafted” algorithms whose
efficiency scientists try to optimize; in contrast, Paige worked on fundamental methodology
for automating the creation of these algorithms, largely without human intervention. His
thesis introduced the novel use of “finite differencing,” usually used in numerical calcula-
tions, as a means of automatic program synthesis. He intended his technology to support
the high productivity needed in software design, while minimizing human error. Paige’s
technology could synthesize programs involving hundreds of thousands of lines of code. This
seminal research also produced the best known algorithms for many ubiquitous programming
problems.

Dr. Paige was the author of many research papers, covering related topics in programming
languages, compilers, algorithms, and database design. An invited speaker at conferences
and university seminars around the world, he also served regularly as a reviewer of research
projects for major government agencies. He was a devoted mentor of Ph.D. students who
today hold research positions at leading universities and research centers.

Bob was more than a good scientist. More important, he was a lovely person. His students
and many of his colleagues regarded him with an affection and respect that was far more
than professional courtesy. His generosity and his encouragement were an inspiration to
those around him. When I was a junior faculty member, and I knew him some but not well,
he came up after a conference talk I gave and said, “I like your stuff and think it’s really
good—and I know a program officer who funds me, and would be very interested. Come
on—let me introduce you to him!” The result was an invitation to a meeting of principal
investigators, several of whom were friends and colleagues who had never uttered a word to

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 35–36.
c© 2008 Springer.

36 Harry Mairson

me about this funding source—their expressions said, “how did you find out about this?”
Years later, I am still stunned by the great generosity that he showed me. I am sure that
many other colleagues can tell similar stories.

The articles appearing in this long-awaited book are testament to the professional impact
that Bob had on the research community around him, and also to the affection that members
of that community had for him. As scientists, we all hope to have a lasting impact on our
respective fields. Most of us must be satisfied with the knowledge that we put a couple
of really good bricks in the foundational walls of our disciplines. More important is our
inspiration to the colleagues and students around us, and the force of that inspiration which
sustains the ongoing work of science. This Festschrift is also a testament to Bob’s having done
that so well. It is the hope of the Editors that this volume stands as witness of many gifts—
gifts of the spirit, gifts of personal and professional inspiration, gifts of shared experience–
that Bob Paige bestowed on his family, friends and colleagues. Bob is survived by his wife
Nieba, and his children Jane and John, who are now 19 and 15 years old, respectively. As
much as Bob is missed, those who we truly love never really leave us.

Harry Mairson
Waltham, May 2007

An Appreciation of Bob Paige

Martin Davis

Department of Computer Science, Courant Institute, New York University,
3360 Dwight Way, Berkeley, CA 94704-2523, USA
martin@eipye.com

As a senior faculty member of the Courant Institute at NYU since 1965 and a charter
member of its Computer Science Department, founded in 1969, I knew Bob Paige as a
graduate student and later as a colleague. My own area of expertise is mathematical logic,
and so was only very peripherally connected with Bob’s work. But being directly involved
with decisions about Bob’s faculty appointment and his promotions, it was important that
I understand what he was doing.

It became clear that Bob was not looking for easy problems. Keenly aware of the prob-
lems associated with the development and maintenance of reliable and efficient software
systems, and following up on his dissertation work with Jack Schwartz, he devoted him-
self to transformational methods. His work required not only that he build and maintain
elaborate systems, but also that he be able to think in an abstract and theoretical manner.
His important insight that loop invariants are related to the classical notion of differencing
is really striking. I loved his demonstration in which his system transformed a simple n2

sorting program into an efficient n log n program.
When I retired to emeritus status in 1996, Bob was already struggling with his fatal

disease. Although I moved to California, I kept getting reports of his courageous stance and
of his continuing to work while his strength ebbed. His tragic very premature death is a
great loss to the Courant Institute and to computer science. He is very much missed.

Martin Davis
Berkeley, May 2007

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 37.
c© 2008 Springer.

Bob Paige and the IFIP Working Group 2.1
Helmuth Partsch

Chairman of IFIP WG 2.1 (March 1988 – May 1993)
Faculty of Computer Science, University of Ulm, D-89069 Ulm, Germany
Helmuth.Partsch@uni-ulm.de

Bob Paige’s first contact with the IFIP Working Group 2.1 was the meeting #27 in Wheeling,
West-Virginia, in 1980 which he attended as an invited observer. For me, this was also the
first occasion in which I met him — however, without really getting into contact with him. His
favorite interest and central Ph.D. topic on “finite differencing” was already known to WG 2.1
through Micha Sharir, a colleague of Bob’s from the Courant Institute, New York University.
Unlike Bob, Micha had already participated as an observer in the two previous meetings
#24 in Summit, New Jersey in 1978 and #25 in Brussels, Belgium in 1979. Therefore, from
the groups (restricted) perspective, Micha seemed to be the one who genuinely represented
the topic of finite differencing, certainly not knowing that — at this time — Bob had
already done much more work in this area than Micha. Also, Micha was a more convincing
“salesman”, and therefore he was the one to become a member of WG 2.1 at the Wheeling
meeting — the same meeting, by the way, when I became a member of the group.

Then Bob participated in the next meeting #28 near Nijmegen, The Netherlands, in May
1981, again as an observer. During that meeting, on one of the evenings, we had the first
somewhat longer private conversation, because Bob wanted to know many details about our
work within the CIP project at the Technical University of Munich. On this occasion we also
had the opportunity to talk about personal subjects, and for me it was the first occasion to
get to know Bob and learn something about him as a person. Afterwards, he missed the meet-
ings #29 (Newbury, Great Britain, January 1982), #30 (New York City, fall 1982), and #31
(Munich, Germany, summer 1983), probably because of limited traveling funds. Maybe he
was also a little disappointed because he was not considered for membership at the Nijmegen
meeting. In fact, I do not even know whether he got an invitation for the next meeting at all.

The next occasion to meet him was during a workshop on “Program Transformation and
Programming Environments” which was organized by Peter Pepper in Munich in fall 1983.
Although this workshop was (formally) outside the IFIP context, a large number of people
somehow related to WG 2.1 (i.e., members and observers) had been invited to this workshop.
A very small party with only a few guests (Bob himself, Martin Feather, and Dave Wile) at
my house after the workshop was the next opportunity to learn more about Bob — about
his childhood in New York, his life at that time, his scientific interests, but also about his
deep love for Nieba who later became his wife.

On this occasion I also learned that Bob was a rather pragmatic person who was always
able to find a very simple solution to any kind of problem: long after midnight, when Dave,
Martin and I were still talking, he got tired; and since Dave and Martin did not want to go
back to their hotel yet, without further ado Bob simply decided to lay down on the carpet, in
one corner of the room and immediately fell deeply asleep. In the morning, when I managed
to wake him up for driving him, Dave, and Martin back to the hotel, his reaction gave us
the impression that for him it was the most normal thing to sleep on the floor.

It took six years then, after the Nijmegen meeting, until he came back to the group as
an observer. He attended the meeting #37 in Montreal, Canada, in 1987 and the meeting
#38 in Rome, Italy, in March 1988. Because I could not attend the Montreal meeting, for
me the Rome meeting was the first occasion to see Bob again. The Rome meeting, organized
by Alberto Pettorossi, was in some sense important for both of us: it was my first meeting

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 38–39.
c© 2008 Springer.

Bob Paige and the IFIP Working Group 2.1 39

as chairman of WG 2.1 (succeeding Peter King) and it also was the meeting at which Bob
finally became a member of the group.

From then on — according to my records — he participated in quite a number of meet-
ings under my chairmanship (#39: Chamrousse, France, January 1989; #40: Lost Valley
Ranch, Colorado, September 1989; #44: Augsburg, Germany, September 1992; #45:Win-
nipeg, Canada, May 1993 — the meeting at which I resigned from chairmanship). In between
these meetings we met twice more: in May 1991, on the occasion of the IFIP Working Con-
ference “Constructing Programs from Specifications”, in Pacific Grove, California, and in
September 1991, at the Workshop on “Parallel Algorithm Derivation and Program Trans-
formation” which Bob organized at the New York University.

Also afterwards, under the chairmanship of my successor, Doug Smith, he participated
in Working group meetings (#46: Renkum, The Netherlands, January 1994; #50: Le Bis-
chenberg, France, February 1997). This last meeting, Le Bischenberg, which was held in
conjunction with the IFIP Working Conference on “Algorithmic Languages and Calculi”,
was when I first learned about Bob’s illness. At this time, he still had hope to be able to
defeat the cancer. In fact, however, it was his last Working Group Meeting and also the last
time I saw him.

Bob loved his wife and his children. His family was at least as important to him as
his scientific work. I remember very well when I first met him together with his wife and
children, on the grounds of the Asiloar Conference Center (at the Working Conference in
Pacific Grove). I was deeply impressed by the obvious great pleasure and pride with which
he introduced his family to me.

Bob was a typical scientist — in a very positive sense. On the one hand, he only wanted
to make a scientific presentation when he really had something to say; otherwise, he stayed
in the background and attended presentations by others very carefully, always eager to
learn something new. On the other hand, he was able to talk about a scientific topic which
attracted his interest at any time and at any occasion — even late at night, or immediately
after waking up. And when he gave a talk about an interesting subject, he just seemed to
live for his presentation and the message he wanted to convey. He nearly forgot everything
around him — sometimes even “hard reality” in the form of time constraints imposed by
the chairman. His scientific contributions covered the full range — from purely theoretical
issues to very practical ones. He never was satisfied with the theoretical result alone, but
always was interested in its practical implementation.

Also typical of a scientist he had a “vision” and deep scientific respect for topics which
were not his own. For instance, when organizing the workshop at Courant Institute in New
York in 1991, Bob had the vision to bring together two scientific “communities” (with an
obvious overlap of interests). Unfortunately, this experiment failed, mainly because a large
number of participants did not realize the scientific potential in Bob’s vision. Bob was
rather depressed by this. Particularly disappoiting for him was the fact that one half of the
participants systematically ignored the other by simply not being present when someone
from the other half gave a talk.

Not necessarily typical of every scientist, Bob was also a humble and, in particular, very
persistent person: At that workshop in New York in 1991 he had no support at all from
NYU. But that was no reason for Bob to give up. As if it were the most normal thing in
the world, he simply took care of absolutely everything by himself — even of lunch catering.
He, his wife, and his friends had prepared small lunch packages and offered them in a very
nice picnic kind of atmosphere, partly outside the building. This was, by the way, also the
second time I had the opportunity to meet his family and confirmed the impression about
their harmonic relationship I had got at the first time.

In his contribution “In Memoriam, Bob Paige” on the WG 2.1 homepage, Allen Goldberg
writes: “I’m sure many of the group’s members feel a deep sense of personal as well as
professional loss”. I wholeheartedly agree.

Helmuth Partsch
Ulm, May 2007

Remembrances of Bob Paige

Alan Siegel

Department of Computer Science, Courant Institute, New York University,
251 Mercer Street, New York, NY 10012, USA
siegel@cs.nyu.edu

I first met Bob in 1969. He had just come to New York to join the systems staff at the
Courant Institute. We had a CDC6600 back then, but our computing services were in the
dark ages. Bob was hired to debug a homegrown time-sharing system that didn’t work. He
turned out to be a perfect hire; Bob thoughtfully discarded the code and built the system
afresh.

Our acquaintance was casual for years. I was just aware that he was an outstanding
systems implementor who was knowledgeable about music and film. His name also appeared
at the top of the Institute chess ladder. That was no mean feat; the Institute had a number
of Russian students back then, and most were strong players.

Time passed, and our relationship grew. But we really got to know each other after
we both became faculty members at NYU. Somehow, we started having discussions of all
sorts: computer science, math, advising students, programming languages, research, chess,
parenthood, children and family, growing up, music, film, restaurants, life, and doing the
right thing. Whatever the topic, Bob always had something insightful to say.

I have to confess that Bob was a hard study. His interests were broad, and he often used
the power of metaphor and literary allusion to make a point. I recall several discussions
where I struggled to keep up with what he was saying.

As I came to understand over time, Bob had extremely high standards, and it is fair to
suggest that there were times when he himself did not meet them. This was never a reason for
him to give up, but rather to work harder. For example, Bob had felt that his mathematics
background was inadequate, so he took some math classes. I never completely understood
just why he thought that mathematics was so important to his research, but it is fair to
say that mathematical ideas and paradigms influenced his work. Bob was especially proud
of his programming version of finite differencing, which he invented to maintain program
invariants and to generate efficient code.

Very few systems researchers have as mathematical and high a level perspective about
programming languages as Bob had. His was visionary. His research pursued very long term
problems that almost no one thought could be solved. He started as an army of one, and
built a system that semiautomatically transforms programs with great power and efficiency.
This work covered many areas of expertise, and no matter what was needed, Bob stood
ready to accept the challenges. It is no accident that a number of basic algorithms and
algorithmic ideas came out of his research. And Bob carried this intensity and passion into
his teaching and advisement. I think it fair to say that Bob caringly enriched his students
with his uniquely big-picture approach to language research.

You can tell a great deal about Bob from his students. I do not think anyone in our de-
partment ever managed to attract a brighter group than Bob’s. Jeff Ullman once commented
that although he (Jeff) had had a very large number of students, there were very few for
whom he can claim to have made a major impact. Jeff was actually commenting about how

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 40–42.
c© 2008 Springer.

Remembrances of Bob Paige 41

bright his students were, and how little guidance they needed. With Bob, the circumstances
were very different. It is probably a reasonable analogy to suggest that Bob’s systems views
were to conventional programming perspectives as the ideas of Nimzovitch (whom he greatly
admired) were to conventional chess. So it was inevitable that his students would receive
something very special. All benefited from his highly abstract perspective and desire to turn
idealized possibilities into efficient pragmatic practice. For example, Bob’s perspective about
the methodology of high-level algorithm design is evident in Jiazhen Cai’s work with Tarjan
on extensions to problems in planarity testing. Similarly, Fritz Henglein’s work on the Y2K
problem bears eloquent testament to the training Bob provided his students.

I should add that Bob’s students also became members of his extended family, and this
special relationship has persisted to this very day.

Our conversations covered many topics, and would often drift from research to students
to life and matters of family. I remember Bob coming into my office bursting with pride.
“My boy”, he said. “Johnny has just drawn his first picture. He is so practical; he drew a
potato”. Bob was like that; a mix of love, good humor, and pride. He was also practical. One
day he told me how Janie got into trouble in middle school. It seems that she had organized
an unauthorized field trip for some friends and classmates. I can guarantee that New York
City public school administrators would not let parents plan such an activity without lots
of consent forms being signed, and it is a certainty that Janie’s actions did not go over very
well with the school. But Bob was glowing. He was pleased that Janie had the nerve to plan
the adventure, and ever so proud of her strong sense of independence. On the other hand,
he knew that she needed no encouragement to become a rebel, so he pretended to be a little
upset with her. As for Nieba, whenever I would comment on Bob’s aesthetic observations and
his insightful literary interpretations, he would reply, “Oh that’s really Nieba’s department.
She has a much better sense about these things than I have”.

Then there were the people, places, and the like. You never know who would be visiting
the Paige apartment. Many of their art works came with a story. And there were the deals.
My refrigerator came from a Bob Paige contact. The price was unbeatable. My wife and I
were once let in at the head of a two-hour line when Paul Prudhomme located his traveling
summer restaurant in New York City. The shortcut was a payback for Bob’s helping the
State of Louisiana with some decisions about fostering computer science research. And it
was official; Governor Edwards’s office had phoned Paul Prudhomme to explain that Bob
was a friend of Louisiana. I seem to recall a personally fished (pried?) abalone dinner that
Bob never found the time to collect out in southern California. I think it was in return for
his suggestions about how to teach some of the more challenging material in Aho, Hopcroft,
and Ullman.

Bob also knew his wines. I remember being treated to remarkable tastings from places
he had visited, and being offered some imports of especially successful vintages. Now Nieba
is an excellent cook, but they both enjoyed fine restaurants. Bob, of course, knew where to
go and what to order, but there was always a personal element to these things. For example,
Bob not only knew where the best nouvelle French cuisine was to be found, but also knew the
chef. Similarly, he knew about the best chamber groups in the city, and knew the musicians
as well.

Bob was a master musician; he had turned down a professional career in trumpet to
work in computer science. He took up new instruments with enthusiasm. I remember when
he started playing the cello, which was motivated by his appreciation of Yo Yo Ma. He
began studying the piano to learn it with Janie. It was fun to watch him struggling to
realize his musicianship and interpretive skills with instruments he could not quite master.
You could tell that he enjoyed the challenge, and did not mind that he did not always
meet his standards. Curiously, I never heard him play the trumpet. In retrospect, I regret
not asking him why he no longer played it. Were the challenges of new instruments more
exciting? Was there a sense of loss over skills dulled by the passage of time? I have no idea

42 Alan Siegel

what Bob’s answer would have been, but do know that in his words, I would have learned
something new about Bob Paige, about myself, and about the human condition in general.

Our discussions were like that. Somehow, Bob could communicate insights that I cannot
recreate despite the unlimited opportunity to revise every syllable of this description of him
and his thoughts. The book “Tuesdays with Morrie” was a pale imitation of what Bob had
on offer. I regret not transcribing our conversations to revisit from time to time, and to
share with others. On the other hand, I believe that a tape recorder would have been needed
to get the job done; his thinking was just too rich to absorb in full detail. Yet the gist of
these conversations remain with me. They are alive, and his spirit continues to challenge
me even though I cannot give his thoughts the force that he could through extemporaneous
discourse.

That kid I had met back in 1969 grew up. Over time, he acquired a wisdom for the ages.
Even as his disease progressed and took over his body, Bob’s mind stayed sharp, and his
words remained uplifting. Bob was like that, and he still is.

Alan Siegel
New York, May 2007

Bob Paige (mid-1980s)

Bob Paige with his wife Nieba (1985)

Bob Paige with his daughter Jane (1990)

Bob Paige with his son John (1993)

Part III

Contributed Papers

Transformational Derivation of an Improved Alias
Analysis Algorithm

Deepak Goyal

Calypto Design Systems, Inc.∗

dgoyal@calypto.com

Summary. In this paper we use a program transformational approach to obtain an asymptotically
improved may–alias analysis algorithm. We derive an O(N3) time algorithm for computing an
intraprocedural flow sensitive may–alias analysis, where N denotes the number of edges in the
program control flow graph (CFG). Our algorithm improves the previous O(N5) time algorithm
by Hind et al. [20]. Our time complexity improvement comes without any deterioration in space
complexity. We also show that for a large subclass of programs in which the in-degree and out-degree
of all CFG nodes is bounded by a constant, our algorithm is linear in the sum of the number of
edges in the CFG of the program and the size of the output, i.e., the size of the computed alias
information, and is therefore asymptotically optimal. Our transformational algorithm derivation
technique also leads to a simplified yet precise analysis of time complexity.

Keywords: intraprocedural flow analysis, may–alias analysis, program transformation.

1 Introduction

Alias analysis (also called Pointer Analysis) of programs has been the subject of considerable
research for over a decade [19] as it is often an important prerequisite to many compiler
optimizations in languages such as C/C++/Java. In this paper we present a transformational
derivation of an O(N3) time intraprocedural flow sensitive alias analysis algorithm [5, 9],
where N denotes the number of edges in the program control flow graph (CFG). A program
control flow graph is a graph-based representation of a program in which each node represents
an assignment statement in the program and edges represent the transfer of control from
one statement to another. Our algorithm vastly improves the existing O(N5) time algorithm
by Hind et al. [20]. Our time complexity improvement comes without any deterioration in
space complexity. The space complexity of both our algorithm and the previously known
algorithm is O(N3) in the worst case. For a large subclass of programs in which the in-degree
and out-degree of nodes in the CFG is bounded by a constant, we show that the time and
space complexity of our algorithm is linear in the sum of the number of edges in the CFG of
the program and the size of the output, i.e., the size of the computed may–alias information.
Thus, our algorithm is asymptotically optimal for this class of input programs. Our time
complexity analysis makes the assumptions that the number of variables in a statement
is bounded by a constant and the number of dereferences (the ∗ operator in the language
C) being applied in any expression is also bounded by a constant. These assumptions are
commonly made in the time complexity analysis of alias analysis algorithms. Hind et al.’s
O(N5) time result [20] relies on the same assumptions.

∗ The work in this paper was done when the author was a graduate student at New York University.
This paper was originally submitted when the author was a Research Staff Member at the IBM
T.J. Watson Research Center.

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 49–70.
c© 2008 Springer.

50 Deepak Goyal

We derive our algorithm by using two high-level program transformations, dominated
convergence [6,8,13] and finite differencing [27]. The dominated convergence transformation
provides a generalized iteration scheme for computing fixed points, and the finite differ-
encing transformation replaces expensive repeated computations by cheaper incremental
counterparts. These transformations may be viewed as schema transformations which are
applied when the program matches a given form, i.e., matches a schema.

Hind et al. specified their alias analysis as a least fixed point computation on the CFG of
a program. We first show how their specification can be transformed into a naive O(N6) time
algorithm using the dominated convergence transformation. Next, we show how a primitive
form of finite differencing can be used to transform the naive algorithm into a workset-based
O(N5) time algorithm. This algorithm turns out to be identical to the one obtained using
Kildall’s strategy [23]. Next, we use a second dominated convergence transformation and
a more advanced finite differencing transformation to derive an asymptotically improved
O(N3) time algorithm.

We also show that our transformational algorithm derivation technique leads to a simpli-
fied yet precise analysis of time complexity. The time complexity analysis of such algorithms
is nontrivial. In the past, the time complexity analysis of alias analysis algorithms has often
been ignored, and in some cases even been incorrect or imprecise. For example, a simpli-
fied version of the may–alias analysis problem was studied in [11] and the time complexity
of a Θ(N5) time algorithm was incorrectly stated to be O(ω × N3) where ω is the loop-
connectedness parameter [22] of the CFG. Actually, the time complexity of the may–alias
analysis is independent of the loop-connectedness parameter. A refined and extended version
of this work was published recently [20], in which the time complexity of the algorithm was
stated to be O(N6) time. Although this time complexity analysis is correct, it is not precise,
and a more careful analysis reveals that the time complexity of this algorithm is Θ(N5).

Even though we focus primarily on the alias analysis problem in this paper, the techniques
used are quite general and can be used to obtain improved algorithms for other problems,
e.g., Escape Analysis [12].

1.1 Background

This work has been inspired by the work of Bob Paige, who, in the late 1970s, set upon
the goal of establishing a transformational program development methodology that could
help in the formal design of algorithms. The main transformations used by Paige were finite
differencing, dominated convergence, and data structure selection.

Finite Differencing

The first transformation developed by Paige was finite differencing, which was a generaliza-
tion of strength reduction [2], and Earley’s Iterator Inversion [16]. The goal was to speed
up programs by replacing costly repeated computations by their more efficient incremental
counterparts.

Paige showed in his Ph.D. thesis [27] that the finite differencing rules could be used to
transform many abstract program specifications into asymptotically more efficient imple-
mentations. The first examples of nontrivial algorithms being derived by finite differencing
were presented in [27,28].

Dominated Convergence

Dominated convergence (also known as Cousot’s chaotic iteration [13]) is a generalized iter-
ation schema for computing fixed points. The study of program analysis problems such as
live variable analysis, constant propagation, etc., which could be specified as least or greatest

Transformational Derivation of an Improved Alias Analysis Algorithm 51

fixed point computations on monotonic functions led Cai and Paige to the use of dominated
convergence as a second transformation technique for program derivation in [6, 8]. Cai and
Paige applied the dominated convergence and finite differencing transformations to the con-
stant propagation problem. They showed how four increasingly accurate specifications of the
constant propagation problem (by more accurate specifications, we mean specifications that
could find more constants) could be systematically transformed into worst-case linear time
implementations on a uniform cost sequential RAM [1]. Later, in [17], it was shown that
these algorithms could also be implemented in worst-case linear time on a pointer machine.

In [7], Cai and Paige used these transformations to define a linear-time language L1 such
that any problem expressible in L1 could be automatically compiled into programs with
time and space complexities linear in the sum of the input space and the output space.
They showed that problems like cycle testing, constant propagation, and unreachable code
elimination could all be expressed in L1, and thus, automatically transformed into linear
time programs.

Data Structure Selection

Paige demonstrated the finite differencing and dominated convergence transformations on
programs written in a SETL-like [32,33] set-theoretic language. Consequently, an important
final transformation in his methodology was the data structure selection transformation
which was required to efficiently implement set-theoretic associative access operations such
as membership testing. The problem of data structure selection had been extensively studied
in the SETL project and had led to the development of many ingenious ideas such as the
idea of basings developed by Schwartz et al. [14, 31]. The idea was intended to reduce (and
possibly eliminate) hashing for implementing associative access operations. Paige refined
the rudimentary ideas of basings into a data structure selection transformation which could
ensure that set-theoretic operations such as membership testing could be implemented in
constant time.

Paige used his three stage methodology based on finite differencing, dominated conver-
gence, and data structure selection, to derive improved algorithms for problems such as the
Single Function Coarsest Partition Problem [29], and the Ready Simulation problem [4].
The alias analysis algorithm presented in this paper can also be transformed using the data
structure selection transformation into a worst-case O(N3) time algorithm in which all as-
sociative access operations can be performed in O(1) time without the use of hashing [17].
However, the details of the data structure selection transformation are beyond the scope
of this paper and will not be discussed here. For our purposes, it will suffice to assume
that associative access operations such as set membership test and set element addition and
deletion of O(1) sized data can be performed in O(1) time using hashing. The algorithm
of Hind et al. [20] also uses hashing and their time complexity analysis relies on the same
assumption.

1.2 Outline of the Rest of the Paper

In Section 2 we present an overview of the set-theoretic programming language notation used
in the rest of the paper. In Section 3 we present an introduction to alias analysis and describe
Hind et al.’s [20] compact representation of alias information. In Section 4 we describe Hind
et al.’s alias analysis and its formulation as a least fixed point computation. In Section 5
we present a naive algorithm for computing the above least fixed point, and prove that the
time complexity of this algorithm is O(N6). In Section 6 we use a simple finite differencing
transformation to transform the naive algorithm into Kildall’s workset algorithm [23] with
a time complexity of O(N5). Finally, in Section 7 we show how a dominated convergence
transformation coupled with an advanced finite differencing transformation can be used to
transform the workset algorithm into a new O(N3) time algorithm.

52 Deepak Goyal

This chapter is an abbreviated version of [18]. Some proofs and details that have been
skipped in the chapter may be found in [18].

2 Notation

This section describes the SETL-like notation that will be used throughout this paper.
SETL [32, 33] is a programming language based on finite set theory [35]. Besides the usual
elementary datatypes, SETL includes builtin datatypes for finite sets, tuples, and maps.
A set is an unordered collection of distinct values, while a tuple is an ordered collection
of values. A map is a set of ordered pairs (i.e., 2-tuples). The elements of sets and tuples
may belong to any datatype (including sets and tuples). We use SETL set comprehension
expression, which in the most general form, is written as

{E(x1, ..., xk) : x1 ∈ S1, x2 ∈ S2(x1), ..., xk ∈ Sk(x1, ..., xk−1)
| K(x1, ..., xk)},

and denotes the set of values E(x1, ..., xk) evaluated over all k-tuples [x1, ..., xk] belonging
to the values satisfying the condition,

x1 ∈ S1 & x2 ∈ S2(x1) & ... & xk ∈ Sk(x1, ..., xk−1),
and also satisfying the boolean expression K(x1, ..., xk). The expression
{[x1, . . . , xk] ∈ ×k

i=1Si | K(x1, . . . , xk) }
is a short form for
{[x1, . . . , xk] : x1 ∈ S1, . . . , xk ∈ Sk | K(x1, . . . , xk)}

When the expression K(x1, ..., xk) is the constant true, it may be elided.
Let F be a map and S be a set. Expression #S is used to denote the cardinality of S.

An arbitrary element can be nondeterministically selected from set S by the expression
� S. If S is empty, then � S returns the value undefined. The expression {} stands for
the empty set and the empty map and the expression [] stands for the empty tuple. The
conditional expression x ∈ S is used for set membership test. A map can be seen as a binary
relation. Note that the first components of the ordered pairs in a map need not be distinct.
Expression F{x} is used for the image of element x in map F , i.e., {y : [x, y] ∈ F}. The
expression domain(F) denotes the set containing the first components of the pairs in F , i.e.,
domain(F) = {x : [x, y] ∈ F}. The assignments S with := x and S less := x stand for the
modification of set S by the insertion and deletion of element x respectively. The extended
image set F [S] stands for the set ∪x∈SF{x}. We use ◦ as the map composition operator, i.e.,
for maps F and G, F ◦G = {[x, z] : [x, y] ∈ G, [y, z] ∈ F}. Furthermore, for any map F , we
define F 0 to be the identity map over the domain of F and map F i to be the composition
F ◦ F i−1 of maps F and F i−1 for i > 0. The for-loop control structure

for x ∈ S loop
block(x)

endloop
(1)

is used to execute a sequence of statements, denoted by block(x), for each element x of
set S. While executing the loop, the elements of set S are selected nondeterministically and
without repetition. The iteration of the loop proceeds through the initial value of S on entry
to the loop (as if the iteration were on a copy of S) and is not affected by modifications to S
within block(x).

2.1 Time Complexity of Set Operations

In order to define the time complexity of associative access operations, we need to define
the Size of a value.

Transformational Derivation of an Improved Alias Analysis Algorithm 53

Size(x) = 1 if x is an elementary type (such as int, char etc.)
Size(S) = 1 + Σx∈SSize(x) if S is a set
Size(F) = 1 + Σx∈domain(F)(Size(x) + Σy∈F{x}Size(y)) if F is a map

(2)

For the rest of the paper, we will assume that sets are implemented by linking the elements
together in a doubly linked list. In addition, the elements of the set are also inserted into a
hash table. The domains of maps are implemented similarly. In addition, each element in the
domain of a map contains a pointer to the set of elements that constitute its image under the
map. Tuples are implemented as arrays. For an O(1)-sized element x, set S and map F , the
hash table-based implementation allows operations such as x ∈ S, S with := x, S less := x,
F{x} to be performed in O(1) time under the assumption that hashing of O(1)-sized data
can be done in O(1) time. The linked list implementation of the elements of the set allows
iteration over a set in time proportional to the cardinality of the set.

3 An Introduction to Alias Analysis

Consider the following assignment statement in the language C.
a = &b (3)

The effect of the assignment is to assign to a the address of b. After execution of state-
ment (3), the lvalues of expressions ∗a and b (i.e., the locations referred to by expressions ∗a
and b) are the same. In such a case, ∗a and b are said to be aliased. We call expressions such
as ∗a and b, access-paths [25]. More precisely, an access-path is the lvalue of an expression
constructed from variables and the pointer dereference operator ∗. The aliasing of ∗a and b
is represented by the alias pair (∗a, b).

Let p1 be a program point, i.e., a point between successive statements in a program P ,
and x and y be access paths constructed from variables in P . Access paths x and y are said
to be may–aliases at program point p1 if there exists an execution of program P in which x
and y are aliased when control reaches program point p1. An alias relation R is a set of alias
pairs. A relation R is said to be a may–alias relation at program point p1 iff R contains all
(but not necessarily only) alias pairs (x, y) such that x and y are may–aliases at p1. Thus,
if R is a may–alias relation at p1 and (u, v) �∈ R, then access paths u and v can never be
aliased whenever control reaches p1 in any possible execution of program P . By definition,
if R is a may–alias relation at p1, then any superset of R is also a may–alias relation at p1.

Let R1 and R2 be two may–alias relations at a program point p1. We say that R1 is
more precise than R2 if R1 ⊂ R2. A may–alias relation R at p1 is said to be precise if
it contains exactly the set of may–aliases at p1. It has been shown that even under the
assumption that all paths of a program are feasible execution paths, i.e., that all branches
of conditionals can be taken, the computation of a precise may–alias relation at a program
point is undecidable [24,30]. Consequently, all may–alias analysis algorithms compute some
overapproximation of the precise may–alias relation at every program point. It does not
make sense to compare the time complexity of different may–alias analysis algorithms unless
they compute may–alias information of comparable precision. The algorithm presented in
this paper computes precisely the same may–alias information that is computed by Hind
et al. [20], but is more efficient than their algorithm.

Since the alias analysis involves the computation of a may–alias relation at every program
point, Hind et al. use a graph-based representation for may–alias relations, which is briefly
described below. In the following sections, the terms “alias” and “may–alias” will be used
interchangeably.

3.1 Graph-based Representation of Alias Information

Hind et al. [20] use a graph-based representation of alias information in which storage loca-
tions are associated with names, and are referred to as named objects [9,21]. The names are

54 Deepak Goyal

either program variable names or new names created on demand for storage locations created
through storage allocation statements such as malloc in the language C. This graph-based
representation of may–alias relations is called an alias graph. In order to get an alias graph
representation of a may–alias relation R, the relation R has to be transformed into a set R′

of alias pairs such that all alias pairs in R′ are of the form (a, b), (∗a, b) or (b, ∗a) where a
and b are named objects. The transformation from R to R′ is done by creating new named
objects as necessary. For example, an alias pair (∗ ∗ c, ∗d) in R is replaced by the alias pairs
(∗c, t), (∗t, u), (∗d, v), and (u, v), where t, u, and v are newly created named objects. Next,
all pairs of the form (a, b) in R′, where a and b are named objects, are removed, and either
all occurrences of a in the remaining alias pairs are replaced by b, or b by a. After this, all
remaining alias pairs in R′ are of the form (∗a, b) or (b, ∗a).

a b c

Fig. 1. An example of an alias graph.

An alias graph G is constructed from R′ as follows. The set of vertices in G contains a
distinct vertex for each distinct named object in some alias pair in R′. The set of edges in G
contains a directed edge from the vertex corresponding to a to the vertex corresponding
to b for every alias pair of the form (∗a, b) or (b, ∗a) in R′. We use the notation [a, b] to
represent an edge from a to b in the alias graph. An alias graph can also be thought of as
a points-to graph [34] where an edge from vertex a to vertex b represents that the named
object corresponding to vertex a may point to the named object corresponding to vertex b.
An example of an alias graph is shown in Figure 1. Let E denote the set of edges and V
denote the set of vertices in an alias graph G representing a may–alias relation R. The set
of edges E can equivalently be considered as a map from V to V . The set of alias pairs
in R can be computed using Definition 1. For a named object a, we will use ai to denote
the access-path obtained by i applications of the pointer dereference operator ∗ to a, e.g.,
a2

def
= ∗ ∗ a.

Definition 1 Let G be an alias graph, and let E denote the set of edges and V denote
the set of vertices in G. The set of aliases of ai (denoting i applications of the dereference
operartor ∗ to a) in G is defined to be the set of vertices in G reachable by a path of length
i from vertex a, and is given by Ei[{a}], where E0 denotes the identity map over the set of
vertices V , and Ei denotes the composition of maps E and Ei−1 for i > 0.

Using Definition 1, we can verify that the alias graph in Figure 1 represents a may–alias
relation R which contains the alias pairs
{(∗a, b), (∗b, c), (∗ ∗ a, c), (a, a), (b, b), (c, c)},

and all other alias pairs that can be inferred by symmetry (if (u, v) ∈ R, then (v, u) ∈ R) and
congruence (if (u, v) ∈ R, then (∗u, ∗v) ∈ R). The alias graph representation of may–alias
relations assumes transitivity. Therefore, the conversion of a may–alias relation to an alias
graph may involve some loss in precision.

For the remainder of the paper, we will use alias graphs to represent may–alias relations,
and use Definition 1 to compute the may–alias relations explicitly.

4 Hind et al.’s May–Alias Analysis Specification

Hind et al. [20] compute the may–alias analysis over the sparse evaluation graph (SEG) [10],
which is a sparse representation of the CFG of a program. In this paper we deal with two
kinds of graphs, namely, alias graphs which represent may–alias relations, and SEGs which

Transformational Derivation of an Improved Alias Analysis Algorithm 55

compactly represent the CFG of a program. In order to avoid confusion, we shall henceforth
use the term vertex for the vertices of an alias graph and the term node for the vertices of
the SEG.

Informally, an SEG contains only the subset of the nodes in the CFG which are consid-
ered “interesting”, and the edges required to connect these nodes. The “interesting” nodes of
the CFG are the nodes at which alias information is potentially modified, i.e., nodes repre-
senting assignments to variables declared as pointers and storage allocation and deallocation
statements such as malloc and free in the language C, and the nodes where alias infor-
mation arriving along multiple paths in the CFG is combined. An SEG may be constructed
from the CFG as follows.

1. Mark all nodes at which alias information is potentially modified.
2. Pick an unmarked node u which has exactly one incoming edge (say, from node v).

Merge node u with its predecessor node v. Repeat Step 2 until no unmarked nodes
having exactly one incoming edge remain.

Assuming that the CFG has exactly one entry node, i.e., a node with no incoming edges, the
only nodes remaining in the SEG when Step 2 terminates, are the unique entry node, the
marked nodes, and the nodes which have more than one incoming edge. The nodes in the
SEG which have more than one incoming edge are called join nodes. The edges coming into
a join node may come either from marked nodes or from other join nodes. Except possibly
for join nodes, each node in the SEG is associated with some pointer assignment statement.
For join nodes that do not represent any other pointer assignment statement, we associate
the trivial pointer assignment statement p = p, where p is an arbitrary pointer variable in
the program.

The may–alias information at each program point, i.e., on entry to, and on exit from
each node n of the SEG, can be computed as a traditional dataflow analysis [2]. Equations
(4) and (5) below define the relationship between the alias information flowing into and out
of a node n.

Two alias graphs are computed for each node n of the SEG, one immediately before
node n and the other immediately after node n. Let In be the set of edges in the alias graph
computed immediately before node n, and let On be the set of edges in the alias graph
computed immediately after node n. Let Pred(n) denote the set of predecessor nodes of
node n in the SEG, i.e., all nodes from which there is an SEG edge to node n. Similarly,
let Succ(n) denote all the successors of node n, i.e., the set of all nodes to which there is
an SEG edge from node n. The set of edges In is the union of the sets Ol computed at the
predecessor nodes l of node n [20]:

In =
⋃

l∈Pred(n)

Ol . (4)

The set of edges On is defined as a function of the pointer assignment statement associated
with node n and the set of edges In. Let node n of the SEG correspond to the assignment
statement pi = qj , where pi is an access-path with i levels of pointer dereferencing from
named object p, qj is an access-path with j levels of pointer dereferencing from named
object q, and as a special case, q−1 denotes &q. We denote the set of edges On by Fn(In)
which is defined as

Fn(In)
def
= (In −Must(In, Ii

n[{p}])) ∪ (Ii
n[{p}]× Ij+1

n [{q}]), (5)

where expression Must is defined by Equation (6) below.

Must(In, S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
In if S = {}
{[p, q] ∈ In | p ∈ S} if #S = 1 and S = {p}

for some vertex p in the alias
graph computed before node n

{} if #S > 1

(6)

56 Deepak Goyal

The intuition behind Equation (5) is explained in more detail in [18].

a

b

e

∗p=∗q; ∗p=∗q;

q

p

d

f

g

h

a

b

eq

p

d

f

g

h

a

b

eq

p

d

f

g

h

a

b

eq

p

d

cc

c c

f

g

h

[1] [2]

Fig. 2. Examples illustrating the computation of an alias graph immediately after a node n
of the SEG corresponding to the pointer assignment ∗p = ∗q.

Example 1 Figure 2 illustrates the computation of the alias graph according to Equa-
tion (5). In Figure 2 [1], I1

n[{p}] = {b} and I2
n[{q}] = {f, g, h}. The assignment ∗p = ∗q

causes the removal of edge [b, c] and the addition of edges [b, f], [b, g], and [b, h]. However,
in Figure 2 [2], I1

n[{p}] = {a, b}. In this case, p may be pointing to either a or b. If p points
to b, then a will continue to point to d after the assignment and if p points to a, then b will
continue to point to c after the assignment. In this case, we cannot remove either [b, c] or
[a, d] from the resulting alias graph since we are trying to compute a conservative approx-
imation to the may–alias relation. Therefore, in this case, no edges are removed and edges
[a, f], [a, g], [a, h] [b, f], [b, g], and [b, h] are added.

Equations (4) and (5) may be combined into the single equation

In =
⋃

l∈Pred(n)

Fl(Il), (7)

for a node n, where Fl(Il), as defined by Equation (5), is the set of edges in the alias graph
computed immediately after node l. In other words, the computed may–alias information
must be a fixed point of the following system of equations:

I1 =
⋃

l∈Pred(1) Fl(Il)
I2 =

⋃
l∈Pred(2) Fl(Il)

. . .
IN =

⋃
l∈Pred(N) Fl(Il),

(8)

where the numbers 1 . . . N are used to denote the N nodes of the SEG. The may–alias
information that we seek to compute, is in fact, the least fixed point of the system of equa-
tions (8). All other fixed points of the system of equations (8) are also safe approximations
of the may–alias relations at every node n, although they are not as accurate (precise) as
the least fixed point. Let

Gk(I1, . . . , IN)
def
=

⋃
l∈Pred(k)

Fl(Il), (9)

Transformational Derivation of an Improved Alias Analysis Algorithm 57

and F([I1, . . . , IN])
def
= [G1([I1, . . . , IN]), . . . , GN ([I1, . . . , IN])]. (10)

Then, the may–alias information that we seek is the least fixed point of function F with
respect to [I1, . . . , IN], and is denoted by LFP≤(F) where the relation ≤ is the component-
wise containment relation over the subset lattice, i.e.,

[I1, . . . , IN] ≤ [I ′1, . . . , I
′
N] iff ∀k = 1, . . . , N, Ik ⊆ I ′k. (11)

5 A Naive Algorithm

We first review a few basic definitions and concepts from lattice theory that underlie the
computation of least fixed points (for more details see [8]). This background material may
be found in any introductory text on lattice theory; for example, Birkhoff [3].

5.1 Definitions

A poset (L,≤) is a reflexive, transitive, antisymmetric binary relation ≤ on a nonempty set
L. A poset (L,≤) has a minimum element 0 iff ∀x ∈ L 0 ≤ x.

Let G : T −→ T be a function from poset (T,≤) to (T,≤). Function G is said to be
monotone (respectively antimonotone) if for every two elements x, y ∈ T such that x ≤ y, it
is the case that G(x) ≤ G(y) (respectively G(y) ≤ G(x)).

Theorem 1, originally due to Tarski and Kleene [26, 36], shows how to compute fixed
points of monotone functions over a finite poset with a minimum element.

Theorem 1 Let (T,≤) be a finite poset with a minimum element 0, and G : T −→ T be
a monotone function. The set {Gi(0) : i = 0, 1, . . .} is finite and the least fixed point of G
(denoted by LFP≤(G)) exists, and is equal to Gk(0) where k is any nonnegative integer for
which Gk(0) = Gk+1(0).

Theorem 2 (Dominated Convergence) [8] Let (T,≤) be a finite poset with minimum
element 0, and G : T −→ T be a monotone function. Let s0, . . . , si, . . . be any sequence such
that :
(1) s0 = 0;
(2) si+1 ∈ T and si ≤ si+1 ≤ G(si)}, for i = 0, 1, . . .
Then we conclude the following :
(1) If there exists an integer k ≥ 0 such that sk = G(sk), then sk = LFP≤(G).
(2) If for all i, si < si+1 whenever si �= G(si), then there exists k ≥ 0 such that sk = G(sk).

It can be seen that the sequence (0,G(0),G2(0), . . .) computed in Theorem 1 is a special
case of the sequence (s0, s1, s2, . . .), for i = 0, 1, . . . where si+1 = G(si).

5.2 The Naive Algorithm

Let S be the the set of all possible points-to edges, i.e., all pairs of named objects in the
program. Thus, In ∈ 2S . Let us use (2S)N to denote the N -way cross-product 2S×2S× . . .×
2S . Let ≤ be the relation defined by (11). Then, ((2S)N ,≤) is a finite poset with a minimum
element [{}, {}, . . . , {}]. In order to show that expression F , as defined by Equation (10), is
monotonic, we must show that each expression Gi is monotonic. Since the union operator
∪ is monotonic, it suffices to show that each expression Fn is monotonic. Using the facts
that 1) the expression E(F, S) = F [S] is monotonic in both parameters F and S, 2) the
composition of monotonic expressions is monotonic, and 3) if expression E1 is monotonic in
some parameter and E2 is antimonotonic in the same parameter, then expression E1 − E2

is monotonic in that parameter, it is easy to show that expression Must(In, Ii
n[{p}]) is

58 Deepak Goyal

antimonotonic in its parameter In and that expression Fn(In) defined by Equation (5) is
monotonic.

From now on, we use I to denote the N -tuple [I1, . . . , IN]. Let I⊥ denote the minimum
element [{}, {}, . . . , {}] of the poset ((2S)N ,≤). It follows from Theorem 1 that LFP≤(F)
can be computed by an iterative scheme which computes the values I⊥,F(I⊥),F2(I⊥),
Such an iteration is guaranteed to terminate at the fixed point in a finite number of steps.

Theorem 2 suggests an alternative scheme for computing the fixed point. Since each
expression Gi is monotonic in each of the parameters I1, . . . , IN , it follows that

[I1, . . . , Ik, . . . , IN]
≤ [I1, . . . , Gk(I1, . . . , IN), . . . , IN]
≤ [G1(I1, . . . , IN), . . . , Gk(I1, . . . , IN), . . . , GN (I1, . . . , IN)],

(12)

or, in other words

I ≤ [I1, . . . , Gk(I), . . . , IN] ≤ F(I) (13)

This suggests an iterative scheme in which an arbitrary component Ik of I satisfying the
condition Ik �= Gk(I) can be nondeterministically selected, and its value updated to Gk(I).
Algorithm (14), given below, is based on this idea.

∀i = 1 . . . N Ii := {}
while exists n ∈ {k ∈ 1 . . . N | Ik �= Gk(I)} loop

In := Gn(I)
endloop

(14)

In Algorithm (14), we assume that for a set S, predicate exists x ∈ S has the side effect of
assigning an arbitrary value in S to x if S is nonempty. From Equation (13) it follows that
the sequence of I’s obtained at the end of each iteration satisfy the conditions of Theorem 2
and are also strictly increasing. Thus, Algorithm (14) is guaranteed to converge to the least
fixed point.

5.3 Time Complexity

The time complexity of Algorithm (14) can be computed as follows. Assume that the SEG
is transformed into an equivalent SEG in which each node has a maximum in-degree and
out-degree of 2. This can be done easily by introducing dummy nodes. Let N denote the
number of nodes in the transformed SEG. Note that the number of nodes in the transformed
SEG is proportional to the number of edges in the original SEG. Let O denote the set of all
distinct named objects in the program and let V denote the cardinality of O. The distinction
between N and V is important. Informally, N is a measure of the size of the program, i.e.,
the number of statements in the program, whereas V is a measure of the number of distinct
variables in the program. Since a variable must appear in at least one statement, and we
assume that the number of variables in any statement is bounded by a constant, V = O(N).
Since each vertex in an alias graph corresponds to a distinct named object, the number of
vertices in an alias graph is bounded by V and the number of edges in an alias graph is
bounded by V 2. For a pointer assignment statement pi = qj , the subscripts i and j refer to
the number of applications of the pointer dereference operator ∗. For the purpose of time
complexity analysis, we assume (like Hind et al.) that i and j are bounded by a constant.

Lemma 1 For any SEG node k, expression Gk(I) can be computed in O(V 2) time.

Lemma 2 Expression {k ∈ 1 . . . N | Ik �= Gk(I)} can be computed in O(NV 2) time.

Lemma 3 The number of iterations in the while loop of Algorithm (14) is at most (NV 2).

For the proofs, look at [18]. It follows from the lemmas that the time complexity of
Algorithm (14) is O(N2V 4) time. The space complexity of this algorithm can easily be seen
to be O(NV 2). Since V = O(N), the time complexity of the naive algorithm is O(N6) and
the space complexity O(N3).

Transformational Derivation of an Improved Alias Analysis Algorithm 59

6 Derivation of Kildall’s Workset Algorithm

In this section we show how a finite differencing transformation can be applied to Algorithm
(14) to derive Kildall’s Workset Algorithm with a time complexity of O(N5).

Finite differencing has to do with replacing costly repeated computations with their
more efficient incremental counterparts. In Algorithm (14) we see that the expression {k ∈
1 . . . N | Ik �= Gk(I)} needs to be recomputed in each iteration. This costly recomputation
can be avoided by maintaining the invariant

Workset = {k ∈ 1 . . . N | Ik �= Gk(I)} (15)

on entry to the while loop, and incrementally maintaining this invariant with respect to
the assignment In := Gn(I). In order to maintain Invariant (15), we note that expression
Gk(I) =

⋃
l∈Pred(k) Fl(Il) depends only on the Il values for the predecessors l of node k.

Consequently, any change to In can only change the value of expressions Gs(I) where s is
a successor of node n, i.e., s ∈ Succ(n). Thus, the code to reestablish Invariant (15) with
respect to the assignment In := Gn(I) is given by

Workset less := n
for s ∈ Succ(n) loop

if Is �= Gs(I) and s �∈Workset then
Workset with := s

endif
endloop

Putting all this together, we get the following algorithm.

1 ∀i = 1 . . . N Ii := {}
2 Workset := {k ∈ 1 . . . N | Ik �= Gk(I)}
3 while exists n ∈Workset loop
4 In := Gn(I)
5 Workset less := n
6 for s ∈ Succ(n) loop
7 if Is �= Gs(I) and s �∈Workset then
8 Workset with := s
9 endif

10 endloop
11 endloop

(16)

Algorithm (16) is similar to the general algorithm proposed by Kildall in his seminal paper
on data flow analysis [23], and is the same as the algorithm presented in [20].

6.1 Time Complexity of the Algorithm

Lemma 4 A SEG node n may be inserted into Workset at most V 2 times.

The proof can be found in [18]. It follows from the lemma that the number of iterations
of the while loop in Algorithm (16) is bounded by NV 2.

Lemma 5 The time complexity of executing the while loop (lines 3–11) in Algorithm (16)
once is O(V 2).

The proof can be found in [18]. Thus, the time complexity of Algorithm (16) is O(NV 4)
time. Since V = O(N), the time complexity of the workset algorithm is O(N5). As before,
the worst-case space complexity is O(N3).

60 Deepak Goyal

7 Going Beyond Kildall’s Workset Algorithm

In this section we show how we can use dominated convergence and finite differencing to
improve the algorithm further. We exploit the fact that there is some redundancy in the
recomputation of expression Gk(I) with respect to a small modification to one of the com-
ponents of I on which Gk(I) depends.

a

b

c

p=∗q ;

q

p

e

d
f

g

h

a

b

c

p=∗q ;

q

p

e

d
f

g

h

a

b

c

p=∗q ;

q

p

e

d
f

g

h

a

b

c

p=∗q ;

q

p

e

d
f

g

h

a

b

c

q

p

e

d
f

g

h

a

b

c

q

p

e

d
f

g

h

a

b

c

q

p

e

d
f

g

h

a

b

c

q

p

e

d
f

g

h

[1] [2] [3] [4]

Fig. 3. Examples illustrating the potential effects of adding a single edge to the incoming
alias graph.

For example, consider the case when SEG node k has a single predecessor node n. Then,
Gk(I) = Fn(In). Let node n be associated with the assignment statement p = ∗q where
p and q are named objects in the input program. Let a, b, c, d, e, f , g, and h be other
named objects in the program. Figure 3 illustrates how expression Gk(I) = Fn(In) changes
with respect to the addition of one edge to In. Figure 3[1] shows the set of edges In and
the corresponding set of edges Fn(In). In Figure 3[2] we see that the addition of edge [p, a]
causes no change in the value of expression Fn(In). In Figure 3[3] we see that the addition
of edge [a, c] causes the addition of edge [a, c] to the old value of expression Fn(In). Finally,
in Figure 3[4], we see that the addition of edge [q, d] causes three edges [q, d], [p, f], [p, g] to
be added to the old value of expression Fn(In). Although, in the worst case, the addition of
one edge to In can result in the addition of up to O(V 2) edges to the old value of expression
Fn(In), we note that in many cases the change in the value of expression Fn(In) may be
small.

We shall attempt to improve Algorithm (16) by eliminating redundancy in the recompu-
tation of expression Fn(In) with respect to addition of edges to In. In Section 5.2 we used a
dominated convergence transformation that allowed one component of tuple [I1, I2, . . . , IN]
to be selected and updated at a time. For any k such that Gk(I) �= Ik, Ik was updated
by changing its value to Gk(I). The new transformation involves selecting a k such that
Gk(I) �= Ik, picking an arbitrary edge [x, y] ∈ Gk(I)− Ik, and adding the edge to Ik in each
iteration. The sequence of values I obtained at the end of each iteration still satisfies the
conditions on the sequence s0, s1, . . . in Theorem 2. Applying this transformation, we get
the following algorithm for computing alias information.

(∀i = 1 . . . N) Ii := {}
while exists [n, [x, y]] ∈ {[k, [x1, y1]] : k ∈ 1 . . . N,

[x1, y1] ∈ (Gk(I)− Ik)} loop
In with := [x, y]

endloop

(17)

Transformational Derivation of an Improved Alias Analysis Algorithm 61

The main source of inefficiency in Algorithm (17) is the recomputation of the set {[k, [x1, y1]] :
k ∈ 1 . . . N, [x1, y1] ∈ (Gk(I)− Ik)} in each iteration. The finite differencing transformation
to Algorithm (14) was based on incrementally maintaining the invariant Workset = {k ∈
1 . . . N | Ik �= Gk(I)} with respect to changes to I. For Algorithm (17) we create the invariant

Workset(k) = Gk(I)− Ik for k = 1 . . . N (18)

on entry to the while loop and incrementally maintain it with respect to the set element
addition In with := [x, y] where [x, y] ∈ (Gn(I)− In).

In order to see how Invariant 18 can be incrementally maintained, consider an arbitrary
SEG node n such that Gn(I)−In is nonempty and let [x, y] be an arbitrary arc of Gn(I)−In.
Let I ′n = In∪{[x, y]}, I ′k = Ik for k �= n, I ′ = [I ′1, . . . , I

′
N], and Workset ′(k) = Gk(I ′)−I ′k for

k = 1 . . . N . Also assume without loss of generality that node n is not a predecessor of itself.
This can be ensured by adding a dummy header node for each loop in the input program.
Then, it is easy to show that

Workset ′(k) =

⎧⎨⎩
Workset(n)− {[x, y]} if k = n
Workset(k) ∪ (Fn(I ′n)− Fn(In)) if k ∈ Succ(n)
Workset(k) otherwise

(19)

1 ∀i = 1 . . . N Ii := {}
2 ∀i = 1 . . . N Workset(i) := Gi(I) − Ii

3 while exists n ∈ {k ∈ 1 . . . N | Workset(k) �= {}} loop

4 [x, y] := (� Workset(n)) -- arbitrary element of Workset(n)
5 Workset(n) less := [x, y] -- Update Workset(n)
6 if Succ(n) �= {} then

7 new_edges := Fn(In ∪ {[x, y]}) − Fn(In)
8 for k ∈ Succ(n) loop

-- Update Workset(k) where k ∈ Succ(n)
9 Workset(k) := Workset(k) ∪ new_edges

10 endloop

11 endif

12 In with := [x, y]
13 endloop

Fig. 4. Algorithm obtained by using a second dominated convergence transformation.

Using Equation (19), we get the algorithm in Figure 4. The only remaining problem is the
efficient recomputation of Fn(In) with respect to the modification In with := [x, y] (line 7
of the algorithm in Figure 4). In order to compute the time complexity of the algorithm
in Figure 4, we need to compute the cumulative cost of each of these recomputations over
all iterations of the while loop. Both of these problems, i.e., the efficient recomputation of
expressions with respect to small modifications, and estimation of the cost of these recompu-
tations, were studied in [7]. In Section 7.1 we review the main results of [7] that are relevant
to this paper. In Section 7.2 we extend these results and in Section 7.3 we use these results
to derive our final algorithm.

7.1 Complexity of Incremental Evaluation of Expressions

For the examples given in the rest of the paper, we will use the symbols R, S, T , U , and V
to denote sets, the symbols F and G to denote maps, the symbols x, y, z to denote elements
of sets, and the symbols x1, x2, . . . , y1, y2, . . . to denote input variables (parameters) of an
expression.

62 Deepak Goyal

We will use the term modification to be associated with both a “kind” of a modification,
and the input variable to which the modification is applied. For example, in the case of mod-
ification S with := z, the kind of modification is “set element addition” and the associated
input variable is S. Similarly, in the case of modification T := U , the kind of modification
is “set assignment” and the associated input variable is T . We will refer to a modification
abstractly as δxi where δ refers to the kind of the modification and xi refers to the associ-
ated input variable. We will also refer to the code required to recompute an expression with
respect to some modification δxi to one of its input variables xi as difference code. For the
rest of the paper, whenever we say the cost of computing an expression, we mean the time
complexity of computing the expression. We use the function Size to denote the size of a set
or map as defined by Equation (2) in Section 2.

Definition 2 (Continuity) Let D be a set of modifications to the input variables x1, . . . , xn

of an expression E(x1, . . . , xn). Let Cost(m) denote the cumulative time complexity of per-
forming an arbitrary sequence m of modifications selected from D. We say that an in-
variant is maintained “eagerly” with respect to a sequence of modifications if the invariant
is reestablished after each modification. Expression E is said to be continuous with re-
spect to set D if the cumulative cost (time complexity) of eagerly maintaining the invariant
t = E(x1, . . . , xn), where t is a variable distinct from x1 . . . xn, with respect to the sequence
of modifications m is:

O(Cost(m) +
n∑

i=1

Size(xi) + Size(E) +
n∑

i=1

Size(xiFinal
) + Size(EFinal)),

where xi, and E refer to the values before the modifications and xiFinal
, and EFinal refer to the

values after the sequence m of modifications. In other words, Expression E is continuous with
respect to set D if the cumulative cost of eagerly maintaining the invariant t = E(x1, . . . , xn)
with respect to a sequence of modifications is linearly bounded by the sum of the cost of the
modifications plus the sum of the sizes of the inputs plus that of the expression, before and
after the modifications.

Example 2 The following examples illustrate the concept of continuity of expressions.

1. Expressions E1(S, T) = S ∪ T , E2(S, T) = S ∩ T , and E3(S, T) = S − T are continuous
with respect to the set of modifications {S with := z, S less := z, T with := z, T less :=
z}. In general, if the cost of recomputing an expression E with respect to a single
modification is bounded by the cost of the modification itself, then the expression is
continuous with respect to the modification.

2. Expressions E1, E2, and E3 as defined above are not continuous with respect to the
modifications {S := U, T := U}

3. Expression E4(S, T) = S × T is continuous with respect to the set of modifications
{S with := z, T with := z}.

4. Expression E4(S, T) = S × T is not continuous with respect to set of modifications
{S with := z, S less := z}.

Example 3 Consider the expression E2(F, S) = F [S], where F is a map and S is a set.
Recall that F [S] is defined to be

⋃
x∈S F{x}. Expression F [S] is continuous with respect

to the set of modifications {S with := z, F{x} with := y}. The following difference code
can be executed before applying the modification S with := z to recompute expression F [S]
(assuming that the old value of expression F [S] is stored in variable E2).

if z �∈ S then
for z′ ∈ F{z} loop

E2 with := z′

endloop
endif

(20)

Transformational Derivation of an Improved Alias Analysis Algorithm 63

Similarly, the following difference code can be executed before applying the modification
F{x} with := y to recompute expression F [S].

if x ∈ S then
E2 with := y

endif
(21)

The cost of Code Fragment (20) is O(#F{z}) if z �∈ S, and O(1) otherwise. The cost of
Code Fragment (21) is O(1). Thus, the cumulative cost of n modifications to set S and m
modifications to map F is bounded by O(n + m + Size(F)) where Size(F) refers to the size
of map F before the modifications. Thus, expression F [S] is continuous with respect to the
set of modifications {S with := z, F{x} with := y}.
Example 4 Expression {[x, y] ∈ F | x �∈ S} is continuous with respect to the set of modi-
fications {F{x} with := y, S with := z}.
Example 5 Expression F [S] is not continuous with respect to the set of modifications
{S with := z, S less := z}.

Composition of continuous expressions does not always result in continuous expressions.
For example, consider expressions E1(S, T) = S ∪ T , E2(S, T) = S × T , E3(F,U) = F [U].
Expressions E1 and E2 are continuous with respect to S with := z, and expression E3 is
continuous with respect to U with := y. The composition of expressions E3 and E1, given
by expression E3(F,E1(S, T)) = F [S ∪ T], is continuous with respect to the modification
S with := z. However, the composition of expressions E3 and E2, given by expression
E3(F,E2(S, T)) = F [S × T], is not continuous with respect to S with := z. In Lemma 6 we
define sufficient conditions under which the composition of continuous expressions is also
continuous. To state Lemma 6, we need the following concepts.

Definition 3 (Input-Bounded) Expression E(x1, . . . , xn) is input-bounded if
Size(E) = O(

∑n
i=1 Size(xi)).

Definition 4 (Output-Bounded) Expression E(x1, . . . , xn) absorbs its k-th parameter xk

if Size(xk) = O(Size(E)). Expression E(x1, . . . , xn) is output-bounded if it absorbs all of its
parameters, i.e., ∀i = 1, . . . , n, Size(xi) = O(Size(E)).

Example 6 The following expressions illustrate the concepts of input-boundedness and
output-boundedness.
1. Expression E1(S, T) = S ∪ T is output-bounded because it absorbs both parameters S

and T . Expression E1 is also input-bounded.
2. Expression E2(S, T) = S ∩ T is input-bounded but not output-bounded. Expression E2

does not absorb any of its parameters S and T .
3. Expression E4(F,G) = F ◦G is neither input-bounded, nor output-bounded. Recall that
◦ is the map composition operator, i.e., F ◦G = {[x, z] : [x, y] ∈ G, [y′, z] ∈ F | y = y′}.

4. Expression E5(F, S) = F [S] is input-bounded but is not output-bounded.

Lemma 6 The following are closure rules for continuity.

1. If expression E(x1, . . . , xn) is continuous with respect to a set of modifications D, it is
also continuous with respect to any nonempty subset of D.

2. Parameter Substitution Rule: If E(x1, . . . , xn) is continuous with respect to the set
of modifications {δx1, δx2, δ3x3, . . . , δnxn}, where variables x1 and x2 are associated with
the same kind of modification δ (e.g., δ may be set element addition), then, expression

E′(y1, x3, . . . , xn) = E(y1, y1, x3, . . . , xn)
is continuous with respect to the modifications {δy1, δ3x3, . . . , δnxn}.

64 Deepak Goyal

3. Composition Rule: Let expression E1(x1, . . . , xn) be continuous with respect to a set
D1 of modifications to input variables x1, . . . , xn. Let D2 be the set of modifications ap-
plied to a variable yk distinct from x1, . . . , xn in the course of maintaining the invariant
yk = E1(x1, . . . , xn) relative to modifications from set D1. Let

E2(y1, . . . , yk, . . . , ym)
be an expression such that input variables y1, . . . , ym are distinct from variables x1, . . . ,
xn. Let D3 be a set of modifications to input variables y1, . . . , yk−1, yk+1, . . . , ym. Let ex-
pression E3 be obtained by substituting expression E1 for input variable yk in expression
E2, i.e.,

E3(y1, . . . , yk−1, x1, . . . , xn, yk+1, . . . , ym) =
E2(y1, . . . , yk−1, E1(x1, . . . , xn), yk+1, . . . , ym).

If expression E2 is continuous with respect to the set of modifications D2 ∪ D3, then
expression E3 is continuous with respect to the set of modifications D1 ∪ D3, if either
(1) expression E2 absorbs its k-th parameter, or (2) if expression E1 is input-bounded.

The proof for composition rule of Lemma 6 can be found in [18]. The following examples il-
lustrate some applications of Lemma 6. These examples constitute substeps in the derivation
of our final algorithm.

Example 7 Consider the expression E1(R, T) = R ∪ T , and expression E2(F, S) = F [S]
where R, T and S are sets and F is a map. Let D1 = {R with := z, T with := z} be a set
of modifications to the input variables R and T of expression E1. Consider the invariant
S = E1(R, T) = R ∪ T . The only modification to set S required to maintain this invariant
with respect to the modifications from D1 is S with := z. Let D2 denote the set containing
this modification, i.e., D2 = {S with := z}. Let D3 = {F{x} with := y} be a set of
modifications to variable F of expression E2. From Example 3 we know that Expression
E2 is continuous with respect to set D2 ∪ D3. From Example 2 we know that expression
E1 is continuous with respect to set D1. The composition rule of Lemma 6 states that if
either expression E1 is input-bounded, or if expression E2 absorbs its second parameter,
then, expression E3(F,R, T) = E2(F,E1(R, T)) = F [R ∪ T] is continuous with respect to
D1 ∪D3. From Example 6, we know that expression E1 is input-bounded. Hence, it follows
that expression E3 is continuous with respect to D1 ∪D3.

The composition rule can also be made constructive. Given the difference code for re-
computing expressions E1 and E2 relative to modifications in D1 and D2 ∪D3 respectively,
the difference code for recomputing expression E3 relative to modifications in D1 ∪D3 can
be obtained as follows. The difference code to recompute E3 relative to a modification in D3

is the same as the difference code to recompute E2 relative to the same modification. For
any modification in D1, we first apply the difference code for E1 relative to this modifica-
tion. The composition rule is applicable only if all modifications made to variable yk while
maintaining the invariant yk = E1 belong to D2. For each such modification, the difference
code to recompute E2 is applied. For example, the new value of expression F [R ∪ T] can
be recomputed with respect to R with := z using the following difference code. We assume
that the old value of expression R ∪ T is stored in a variable S, and that the old value of
expression F [R ∪ T] is stored in variable O.

-- difference code for S = R ∪ T with respect to R with := z
if z �∈ S then

-- difference code for F [S] with respect to S with := z
for y ∈ F{z} loop

O with := y
endloop
S with := z

endif

(22)

Transformational Derivation of an Improved Alias Analysis Algorithm 65

Example 8 Expression F [G[S]] (where F and G are maps and S is a set) is continuous
with respect to the set of modifications {S with := x,G{y} with := z, F{y} with := z}.
Consider the two expressions E1(G,S) = G[S] and E2(F, T) = F [T]. As shown in Example 3,
both E1 and E2 are continuous with respect to the sets of modifications D1 = {S with :=
x,G{y} with := z} and D2 = {T with := x, F{y} with := z} respectively. The only modifica-
tion required to set T to maintain the invariant T = G[S] with respect to D1 is T with := x.
Moreover, we know from Example 6 that E1 is input-bounded. Thus, it follows from the
composition rule of Lemma 6 that expression E2(F,E1(G,S)) = F [G[S]] is continuous with
respect to the set of modifications D = {S with := x,G{y} with := z, F{y} with := z}.
Example 9 Expression F [F [S]] (or F 2[S]) is continuous with respect to the set of mod-
ifications {S with := x, F{y} with := z}. The proof follows by applying the parameter
substitution rule from Lemma 6 to the expression F [G[S]].

Example 10 Expression F k[S] for a fixed constant value k is continuous with respect to
{S with := x, F{y} with := z}. It is easy to show that each of the expressions F i[S] is
input-bounded for i = 1, . . . , k − 1. The result follows by k − 1 repeated applications of
Lemma 6.

Example 11 The boolean-valued expression #S = k for any constant k is an O(1) time
computable expression, and therefore continuous with respect to any set of modifications
to S. Using the composition rule of Lemma 6, it follows that if expression E(x1, . . . , xl)
is an input-bounded expression which is continuous with respect to a set D of modifica-
tions to variables x1, . . . , xl, then the boolean-valued expression #E(x1, . . . , xl) = k is also
continuous with respect to set D.

7.2 Extension to Lemma 6

We now present an example that illustrates a limitation of Lemma 6 as stated in [7]. Since
we run into a similar limitation in the derivation of our final algorithm, we also propose an
extension to lemma 6 that overcomes this limitation.

Example 12 Consider the expression E = R ∪ (if #S = 1 then T else U endif).
Consider the set D1 of modifications {S with := z, T with := z, U with := z}. Expression
(if #S = 1 then T else U endif) is both input-bounded and continuous with respect to
D1. Now we will introduce a set D2 of modifications applied to variable V in the process of
maintaining the invariant V = (if #S = 1 then T else U endif) with respect to modi-
fications drawn from D1. The modification S with := z could cause the value of predicate
#S = 1 to shift from false to true if S was empty before the modification, or shift from
true to false if #S = 1 before the modification and S did not already contain z. The cor-
responding modifications required to variable V are V := T or V := U . The modifications
T with := z and U with := z require the modification V with := z to variable V . Thus, the
set D2 of modifications to V is given by {V with := z, V := T, V := U}. The expression
R∪V is not continuous with respect to the set {V with := z, V := T, V := U}. For example,
if we alternate the modifications V := T and V := U , then the time spent in recomputing
R ∪ V each time is O(#T + #U), and the cumulative cost of recomputing R ∪ V over m
such modifications cannot be bounded by the sum of the costs of the modifications (O(1)
time each) plus the initial and final sizes of the input plus that of the output. Consequently,
the composition rule of Lemma 6 is not applicable over here.

The problem in applying the composition rule arises because of the updates required
when predicate #S = 1 changes from false to true, or from true to false. However, if all
modifications have the form S with := z, then the value of predicate #S = 1 may change
at most twice, once from false to true, and once from true to false. Consequently, the

66 Deepak Goyal

modifications V := T , or V := U can be applied to variable V at most once each. Given this
fact, it can be shown that E is indeed continuous with respect to D1. However, if set D1

additionally includes the modification S less := z, then the number of times that predicate
#S = 1 can change value (on application of an arbitrary sequence of modifications from D1)
is not bounded by a constant, and in this case expression E is not continuous with respect
to D1. Based on this intuition, we propose the following extension to the composition rule
of Lemma 6.

Lemma 7 (Extension to the composition rule of Lemma 6) Let
E1(x1, . . . , xn) = if E11(x1, . . . , xn) then E12(x1, . . . , xn) else E13(x1, . . . , xn) endif

where E11 is a boolean-valued predicate, E12 and E13 are input-bounded expressions. Let D1

be a set of modifications to input variables x1, . . . , xn. Let D1 be such that, for any variable
xi, the modifications to xi in D1 may either only cause the size of xi to increase, or only to
decrease. Let E11, E12, and E13 be continuous with respect to D1. Let c1 be some constant
bound on the number of times that the value of predicate E11 can change on application of
an arbitrary sequence of modifications from D1.

Let E2(y1, . . . , yk, . . . , ym) be an expression such that variables y1, . . . , ym are distinct
from variables x1, . . . , xn. Let D3 be a set of modifications to input variables y1, . . . , yk−1,
yk+1, . . . , ym. Let expressions E21 and E22 be obtained by substituting variable yk in expres-
sion E2 by expressions E12 and E13 respectively, and expression E3 be obtained by substi-
tuting variable yk in expression E2 by expression E1, i.e.,

E21(y1, . . . , yk−1, x1, . . . , xn, yk+1, . . . , ym) =
E2(y1, . . . , yk−1, E12(x1, . . . , xn), yk+1, . . . , ym),

E22(y1, . . . , yk−1, x1, . . . , xn, yk+1, . . . , ym) =
E2(y1, . . . , yk−1, E13(x1, . . . , xn), yk+1, . . . , ym), and,

E3(y1, . . . , yk−1, x1, . . . , xn, yk+1, . . . , ym) =
E2(y1, . . . , yk−1, E1(x1, . . . , xn), yk+1, . . . , ym).

Let the cost of recomputing expression E2 with respect to the modification yk := E′ be
O(Size(yki

) + Size(ykf
)), where yki

denotes the value of variable yk before the modification
and ykf

denotes the value of variable yk after the modification. Let
|Size(E2(y1, . . . , y

′
k, . . . , ym))− Size(E2(y1, . . . , yk, . . . , ym))| = O(Size(yk) + Size(y′

k)).
If expressions E21 and E22 are both continuous with respect to D1 ∪D3, then expression E3

is also continuous with respect to D1 ∪D3.

The proof of Lemma 7 may be found in [18].

Example 13 From Lemma 7, it follows that expression
E(R,S, T, U) = R ∪ (if #S = 1 then T else U endif)

is continuous with respect to {S with := z, T with := z, U with := z}.

7.3 An Improved Alias Analysis Algorithm

We now return to the derivation of the alias analysis algorithm. Recall that the main source
of inefficiency in the algorithm in Figure 4 in Section 7 was the incremental computation
of Fn(In) with respect to the modification In with := [x, y]. We now show that expression
Fn(In) is continuous with respect to the set of modifications D = {In with := [x, y]}.
Lemma 8 Expression Fn(In), given by Equation (5), is continuous with respect to the set
of modifications D = {In with := [x, y]}.

Transformational Derivation of an Improved Alias Analysis Algorithm 67

-- Incrementally compute the changes inc_Pi and inc_Qj+1 to Pi and Qj+1

-- using the code in Example 10.
inc_Pi = (In ∪ {[x, y]})i[{p}] − Ii

n[{p}]
inc_Qj+1 = (In ∪ {[x, y]})j+1[{q}] − Ij+1

n [{q}]
-- Incrementally compute changes to E2 with respect to In with := [x, y]
-- and Pi := Pi ∪ inc_Pi.
inc_E2 := if x �∈ Pi and x �∈ inc_Pi then{[x, y]} else {} endif

dec_E2 := ∪x1∈inc_Pi{[x1, y1] : y1 ∈ In{x1}}
-- Incrementally compute changes to E1.
if #Pi = 0 and #inc_Pi = 0 then

inc_E1 := {}
elseif #Pi = 0 and #inc_Pi = 1 then

inc_E1 := E2 ∪ inc_E2 − dec_E2

elseif #Pi = 0 and #inc_Pi > 1 then

inc_E1 := In ∪ {[x, y]}
elseif #Pi = 1 and #inc_Pi = 0 then

inc_E1 := inc_E2

elseif #Pi = 1 and #inc_Pi > 0 then

inc_E1 := In ∪ {[x, y]} − E2

else

inc_E1 := {[x, y]}
endif

-- Incrementally compute changes to E3

inc_E3 := Pi × inc_Qj+1 ∪ inc_Pi × Qj+1 ∪ inc_Pi × inc_Qj+1

-- Incrementally compute changes to E4

inc_E4 := inc_E1 ∪ inc_E3

Fig. 5. Outline of the code used to incrementally evaluate Fn(In) with respect to the mod-
ification In with := [x, y].

The proof of Lemma 8 may be found in [18].
The code for efficiently recomputing Fn(In) with respect to In with := [x, y] can be

derived as follows. From the proof of Lemma 8, it can be determined that the following
invariants need to be maintained.

1. Pi = Ii
n[{p}]

2. Qj+1 = Ij+1
n [{q}]

3. E2 = {[x1, x2] ∈ In | x1 �∈ Pi}
4. E1 = if #Pi = 0 then {} elseif #Pi = 1 then E2 else In endif
5. E3 = Pi ×Qj+1

6. E4 (= Fn(In)) = E1 ∪ E3

The outline of the code to incrementally compute the changes to E4 with respect to
In with := [x, y] is given in Figure 5.

Time Complexity of the Algorithm

Let us now compute the time complexity of the algorithm in Figure 4 in which Line 7 is
efficiently implemented using the code outlined in Figure 5. There is one remaining source
of inefficiency in the algorithm in Figure 4, which is the repeated computation of expression
{k ∈ 1 . . . N | Workset(k) �= {}} on Line 3 for each iteration of the while loop. This can
be easily eliminated using another simple finite differencing transformation in which we
maintain the invariant

Workset ′ = {k ∈ 1 . . . N |Workset(k) �= {}}. (23)

68 Deepak Goyal

1 ∀i = 1 . . . N Ii := {}
2 ∀i = 1 . . . N Workset(i) := Gi(I) − Ii

3 Workset ′ := {k ∈ 1 . . . N | Workset(k) �= {}}
4 while exists n ∈ Workset ′ loop
5 [x, y] := � Workset(n) -- arbitrary element of Workset(n)
6 if #Workset(n) = 1 then

7 Workset ′ less := n
8 endif

9 Workset(n) less := [x, y] -- Update Workset(n)
10 if Succ(n) �= {} then

11 new_edges := Fn(In ∪ {[x, y]}) − Fn(In) -- computed using Figure 5
12 for k ∈ Succ(n) loop

13 if #new_edges �= 0 then

14 Workset ′ with := k
15 endif

-- Update Workset(k) where k ∈ Succ(n)
16 Workset(k) := Workset(k) ∪ new_edges
17 endloop

18 endif

19 In with := [x, y]
20 endloop

Fig. 6. The final O(N3) time algorithm for computing may–alias information.

This invariant needs to be updated on execution of Lines 5 and 9 of the algorithm of Figure 4.
The final algorithm which incorporates this transformation is given in Figure 6.

Let InFinal
denote the final value of In on termination of the algorithm, i.e., the set of

edges in the alias graph computed just before node n.

Lemma 9 The while loop in Figure 6 (Lines 4–20) gets executed Σn=1...NInFinal
times.

Lemma 10 The time complexity of the Algorithm in Figure 6 is O(Σn=1...NInFinal
).

The proofs can be found in [18].
Our final Algorithm in Figure 6 is linear in the size of the output for all programs whose

SEG’s in-degree and out-degree is bounded by a constant. Thus, for this class of programs,
our algorithm is asymptotically optimal.

For other programs, we can show that even though the algorithm is not guaranteed to
be linear in the size of the output, it is still guaranteed to be O(N3) where N denotes the
number of nodes in the transformed SEG, i.e., the SEG which has been transformed to have
a maximum in-degree and out-degree of 2. Note that N is proportional to the number of
edges in the original SEG. For programs in which the in-degree and out-degree of the SEG is
not bounded by a constant, the time complexity of our algorithm is still O(Σi=1...NInFinal

),
but the size of the relevant output may be smaller, since we do not care about the values
InFinal

where n is a dummy SEG node. However, InFinal
= O(V 2), where V is the number

of distinct named objects in the program. Thus, the time complexity of the algorithm is
O(N × V 2). Since V = O(N), the time complexity of the algorithm is O(N3) where N
denotes the number of edges in the CFG of the input program.

8 Conclusion

In this paper, we have presented a new O(N3) time intraprocedural flow sensitive may–
alias analysis algorithm where N denotes the number of edges in the CFG of the program.
The improvement in time complexity is obtained without deterioration of space complexity.

Transformational Derivation of an Improved Alias Analysis Algorithm 69

However, the main contribution of the paper is not the alias analysis algorithm per se but the
techniques that are used to derive the algorithm and the fact that our derivation technique
leads to a simplified yet precise analysis of time complexity. We believe that the techniques
used in this paper are of independent interest for algorithm designers. Another example of
a problem where these techniques are applicable is the problem of Escape Analysis for Java
programs [12]. In [12], an O(N5) time algorithm for doing Escape Analysis is presented. This
algorithm uses Kildall’s workset strategy to compute the least fixed point. The techniques
used in our paper can be directly applied to obtain a new O(N3) time Escape Analysis
algorithm.

The algorithm presented in our paper computes may–alias information independently at
each program point. One approach for improving the algorithm could be to exploit the fact
that alias graphs computed at successive program points share a lot of common structure.
The use of persistent data structures [15] to store alias graphs would significantly reduce
the space requirements of the algorithm in practice. It would be worthwhile to study how
techniques such as finite differencing can be used together with persistent data structures.

References

1. A. Aho, J. Hopcroft, and J. Ullman: Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

2. A. V. Aho, R. Sethi, and J. D. Ullman: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1988.

3. G. Birkhoff: Lattice Theory. American Mathematical Society, Providence, 1966.
4. B. Bloom: Ready Simulation, Bisimulation, and the Semantics of CCS-like Languages.

Ph.D. thesis, Massachusets Institute of Technology, 1989.
5. M. Burke: An interval-based approach to exhaustive and incremental interproce-

dural data-flow analysis. ACM Transactions on Programming Languages and Systems,
12(3):341–395, July 1990.

6. J. Cai: Fixed point computation and transformational programming. Technical Report
DCS-TR-217, The State University of New Jersey, Rutgers. Ph.D. Thesis, 1987.

7. J. Cai and R. Paige: Binding performance at language design time. In Proc. Fourteenth
ACM Symp. on Principles of Programming Languages, 85–97, Jan. 1987.

8. J. Cai and R. Paige: Program derivation by fixed point computation. Science of Com-
puter Programming, 11:3, 197–261, 1989.

9. D. R. Chase, M. Wegman, and F. K. Zadeck: Analysis of pointers and structures. In
SIGPLAN’90 Conference on Programming Language Design and Implementation, 296–
310, 1990.

10. J. D. Choi, M. Burke, and P. Carini: Automatic construction of sparse data flow evalua-
tion graphs. In 18th annual ACM symposium on Principles of Programming Languages,
55–66, 1991.

11. J. D. Choi, M. Burke, and P. Carini: Efficient flow-sensitive interprocedural computation
of pointer-induced aliases and side-effects. In 20th SIGACT-SIGPLAN ACM Symposium
on the Principles of Programming Languages, 232–245, 1993.

12. J. D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff: Escape analysis for
Java. In Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations, Nov. 1999.

13. P. Cousot: Asynchronous iterative methods for solving a fixed point system of monotone
equations in a complete lattice. Res. rep. R.R. 88, Laboratoire IMAG, Université scien-
tifique et médicale de Grenoble, Grenoble, France, 15 pages, Sept. 1977.

14. R. Dewar, A. Grand, S. Liu, and J. Schwartz: Programming by refinement, as exemplified
by the SETL representation sublanguage. TOPLAS, 1(1):27–49, July 1979.

70 Deepak Goyal

15. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan: Making data structures
persistent. Journal of Computer and System Sciences, 38(1), Feb. 1989.

16. J. Earley: High level iterators and a method for automatically designing data structure
representation. J. of Computer Languages, 1(4):321–342, 1976.

17. D. Goyal: A Language-Theoretic Approach to Algorithms. Ph.D. thesis, Computer
Science Dept., New York University, January 2000. http://cs.nyu.edu/deepak/
ThinThesis.ps.

18. D. Goyal: Transformational derivation of an improved alias analysis algorithm. Higher
Order And Symbolic Computation, 18(1-2):15–49, 2005.

19. M. Hind: Pointer analysis: Haven’t we solved this problem yet? In 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing (PASTE’01), Snowbird, Utah, June 2001.

20. M. Hind, M. Burke, P. Carini, and J. D. Choi: Interprocedural pointer alias analysis.
ACM TOPLAS, 21(4):848–894, July 1999.

21. S. Horwitz, P. Pfeiffer, and T. Reps: Dependence analysis for pointer variables. In
Programming Language Design and Implementation, 28–40, 1989.

22. J. B. Kam and J. D. Ullman: Monotone data flow analysis frameworks. Acta Informatica,
7:305–317, 1977.

23. G. A. Kildall: A unified approach to global program optimization. In ACM Symp. on
Principles of Prog. Lang., 194–206, 1973.

24. W. Landi: Undecidability of static analysis. ACM Letters on Programming Languages
and Systems, 1(4):323–337, Dec. 1992.

25. J. R. Larus and P. N. Hilfinger: Detecting conflicts between structure accesses. In
Programming Language Design and Implementation, 21–34, 1988.

26. J.-L. Lassez, V. L. Nguyen, and L. Sonenberg: Fixed point theorems and semantics: A
folk tale. Information Processing Letters, 14(3):112–116, 1982.

27. R. Paige: Formal Differentiation: A Program Synthesis Technique. UMI Research Press,
1981. Revision of Ph.D. thesis, NYU, June 1979.

28. R. Paige and S. Koenig: Finite differencing of computable expressions. ACM Trans. on
Programming Languages and Systems, 4(3):401–454, 1982.

29. R. Paige, R. Tarjan, and R. Bonic: A linear time solution to the single function coarsest
partition problem. Theoretical Computer Science, 40(1):67–84, Sept. 1985.

30. G. Ramalingam: The undecidability of aliasing. ACM Transactions on Programming
Languages and Systems, 16(6):1467–1471, Nov. 1994.

31. E. Schonberg, J. Schwartz, and M. Sharir: An automatic technique for selection of data
representations in SETL programs. ACM TOPLAS, 3(2):126–143, Apr. 1981.

32. J. Schwartz: On Programming: An Interim Report on the SETL Project, Installments I
and II. New York University, New York, 1974.

33. J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg: Programming with Sets: An
Introduction to SETL. Springer-Verlag, New York, 1986.

34. B. Steensgaard. Points-to analysis in almost linear time: In 23rd SIGACT-SIGPLAN
ACM Symposium on the Principles of Programming Languages, 32–41, 1996.

35. P. Suppes: Axiomatic Set Theory. Dover, 1972.
36. A. Tarski: A lattice-theoretical fixpoint theorem and its application. Pacific J. of

Mathematics, 5:285–309, 1955.

Dynamic Programming via Static Incrementalization

Yanhong A. Liu and Scott D. Stoller∗

State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
{liu,stoller}@cs.sunysb.edu

Summary. Dynamic programming is an important algorithm design technique. It is used for prob-
lems whose solutions involve recursively solving subproblems that share subsubproblems. While
a straightforward recursive program solves common subsubproblems repeatedly, a dynamic pro-
gramming algorithm solves every subsubproblem just once, saves the result, and reuses it when
the subsubproblem is encountered again. This can reduce the time complexity from exponential
to polynomial. This paper describes a systematic method for transforming programs written as
straightforward recursions into programs that use dynamic programming. The method extends the
original program to cache all possibly computed values, incrementalizes the extended program with
respect to an input increment to use and maintain all cached results, prunes out cached results
that are not used in the incremental computation, and uses the resulting incremental program to
form an optimized new program. Incrementalization statically exploits semantics of both control
structures and data structures and maintains as invariants equalities characterizing cached results.
It provides the basis of a general method for achieving drastic program speedups. Compared with
previous methods that perform memoization or tabulation, the method based on incrementalization
is more powerful and systematic. It has been implemented in a prototype system CACHET and
applied to numerous problems and succeeded on all of them.

Keywords: caching, dependence analysis, dynamic programming, incremental computation,
incrementalization, memoization, program optimization, program transformation, static analysis,
tabulation.

1 Introduction

Dynamic programming is an important technique for designing efficient algorithms [2,15,53].
It is used for problems whose solutions involve recursively solving subproblems that share
subsubproblems. While a straightforward recursive program solves common subsubproblems
repeatedly, a dynamic programming algorithm solves every subsubproblem just once, saves
the result in a table, and reuses the result when the subsubproblem is encountered again.
This can reduce the time complexity from exponential to polynomial. The technique is
generally applicable to all problems that can be solved efficiently by memoizing results of
subproblems [4, 5].

Given a straightforward recursion, there are two traditional ways to achieve the effect of
dynamic programming [15]: memoization [41] and tabulation [5].

Memoization uses a mechanism that is separate from the original program to save the
result of each function call or reduction as the program executes [1, 19, 20, 25, 27, 28, 41, 42,

∗ This work is supported in part by ONR under grants N00014-99-1-0132 and N00014-99-1-0358
and by NSF under grants CCR-9711253 and CCR-9876058. This article is a revised and extended
version of a paper that appeared in Proceedings of the 8th European Symposium on Programming,
Amsterdam, The Netherlands, March 1999.

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 71–92.
c© 2008 Springer.

72 Yanhong A. Liu and Scott D. Stoller

46,50,52]. The idea is to keep a separate table of solutions to subproblems, modify recursive
calls to first look up in the table, and then, if the subproblem has been computed, use the
saved result, otherwise, compute it and save the result in the table. This method has two
advantages. First, the original recursive program needs virtually no change. The underlying
interpretation mechanism takes care of table filling and lookup. Second, only values needed
by the original program are actually computed, which is optimal in a sense. Memoization
has two disadvantages. First, the mechanism for table filling and lookup has an interpretive
overhead. Second, no general strategy for table management is efficient for all problems.

Tabulation statically determines what shape of table is needed to store the values of all
possibly needed subcomputations, introduces appropriate data structures for the table, and
computes the table entries in a bottom-up fashion so that the solution to a superproblem
is computed using available solutions to subproblems [5, 11–14, 24, 46–49]. This overcomes
both disadvantages of memoization. First, table filling and lookup are compiled into the
resulting program, so no separate mechanism is needed for the execution. Second, strategies
for table filling and lookup can be specialized to be efficient for particular problems. However,
tabulation has two drawbacks. First, it usually requires a thorough understanding of the
problem and a complete manual rewrite of the program [15]. Second, to statically ensure
that all values possibly needed are computed and stored, a table that is larger than necessary
is often used; it may also include solutions to subproblems not actually needed in the original
computation.

This paper presents a powerful method that statically analyzes and transforms straight-
forward recursive programs to efficiently cache and use the results of needed subproblems at
appropriate program points in appropriate data structures. The method has three steps: (1)
extend the original program to cache all possibly computed values, (2) incrementalize the ex-
tended program, with respect to an input increment, to use and maintain all cached results,
(3) prune out cached results that are not used in the incremental computation, and use the
resulting incremental program to form an optimized program. The method overcomes both
drawbacks of tabulation. First, it consists of static program analyses and transformations
that are general and systematic. Second, it stores only values that are necessary for the opti-
mization; it also shows exactly when and where subproblems not in the original computation
have to be included.

Our method is based on a number of static analyses and transformations studied previ-
ously by others [6,9,21,43,48,56,57,63] and ourselves [30,37,38,40] and improves them. Each
of the caching, incrementalization, and pruning steps is simple, automatable, and efficient
and has been implemented in a prototype system, CACHET. The system has been used
in optimizing many programs written as straightforward recursions, including all dynamic
programming problems found in [2, 15, 53], most in semiautomatic mode and some in fully
automatic mode. Performance measurements confirm drastic asymptotic speedups.

The rest of the paper is organized as follows. Section 2 formulates the problem. Sec-
tions 3, 4, and 5 describe the three steps. Section 6 summarizes and discuses related issues.
Section 7 presents the experimentation and performance measurements. Section 8 compares
with related work and concludes.

2 Formulating the Problem

Straightforward solutions to many combinatorics and optimization problems can be written
as simple recursions [15,53]. For example, the matrix-chain multiplication problem [15, pages
302–314] computes the minimum number of scalar multiplications needed by any parenthe-
sization in multiplying a chain of n matrices, where matrix i has dimensions pi−1 × pi.
This can be computed as m(1, n), where m(i, j) computes the minimum number of scalar
multiplications for multiplying matrices i through j and can be defined as: for i ≤ j,

m(i, j) =
{

0 if i = j
mini≤k≤j−1{m(i, k) + m(k + 1, j) + pi−1 ∗ pk ∗ pj} otherwise

Dynamic Programming via Static Incrementalization 73

The longest-common-subsequence problem [15, pages 314–320] computes the length c(n,m)
of the longest common subsequence of two sequences 〈x1, x2, ..., xn〉 and 〈y1, y2, ..., ym〉,
where c(i, j) can be defined as: for i, j ≥ 0,

c(i, j) =

⎧⎨⎩
0 if i = 0 or j = 0
c(i− 1, j − 1) + 1 if i �= 0 and j �= 0 and xi = yj

max(c(i, j − 1), c(i− 1, j)) otherwise
Both of these examples are literally copied from the textbook by Cormen, Leiserson, and
Rivest [15].

These recursive functions can be written straightforwardly in the following first-order,
call-by-value functional programming language. A program is a function f0 defined by a set
of mutually recursive functions of the form

f(v1, ..., vn) � e

where an expression e is given by the grammar

e ::= v variable
| c(e1, ..., en) constructor application
| p(e1, ..., en) primitive function application
| f(e1, ..., en) function application
| if e1 then e2 else e3 conditional expression
| let v = e1 in e2 binding expression

We include arrays as variables and use them for indexed access such as xi and pj above.
For convenience, we allow global variables, i.e., variables that do not change across function
calls, to be implicit parameters to functions; such variables can be identified easily for our
language even if they are given as explicit parameters. For a conditional expression whose
condition depends on a global variable, we assume that both branches may be executed
without divergence or runtime errors regardless of the value of the condition, which holds
for the large class of combinatorics and optimization problems we handle.

Figure 1 gives programs for the examples above. Invariants about an input are not part of
a program but are written explicitly to be used by the transformations. Clearly, x and y are
implicit parameters to c, and p is an implicit parameter to m and msub. Condition x[i] = y[j]
in c depends on global variables x and y. These examples do not use data constructors, but
our previous papers contain a number of examples that use them [37,38,40] and our method
handles them.

c(i, j) where i, j ≥ 0
� if i = 0 ∨ j = 0 then 0

else if x[i] = y[j] then c(i−1, j−1) + 1
else max(c(i, j−1), c(i−1, j))

m(i, j) where i ≤ j

� if i = j then 0
else msub(i, j, i)

msub(i, j, k) where i ≤ k ≤ j − 1
� let s = m(i, k) + m(k+1, j) + p[i−1] ∗ p[k] ∗ p[j] in

if k +1 = j then s
else min(s,msub(i, j, k + 1))

Fig. 1. Example programs.

These straightforward programs repeatedly solve common subproblems and take expo-
nential time. For example, m(i, j) computes m(i, k) for all k from i to j − 1 and computes
m(k, j) for all k from i + 1 to j. We transform them into dynamic programming algorithms
that perform efficient caching and take polynomial time.

We use an asymptotic cost model for measuring time complexity. Assuming that all prim-
itive functions take constant time, we need to consider only values of function applications

74 Yanhong A. Liu and Scott D. Stoller

as candidates for caching. Caching takes extra space, which reflects the well-known trade-off
between time and space. Our primary goal is to improve the asymptotic running time of the
program. Our secondary goal is to save space by caching only values useful for achieving the
primary goal.

Caching requires appropriate data structures. In Step 1, we cache all possibly computed
results in a recursive tree following the structure of recursive calls. Each node of the tree is
a tuple that bundles recursive subtrees with the return value of the current call. We use <>
to denote a tuple, and we use selectors 1st , 2nd , 3rd , etc. to select the first, second, third,
etc. elements of a tuple.

In Step 2, cached values are used and maintained in efficiently computing function calls
on slightly incremented inputs. We use an infix operation ⊕ to denote an input increment
operation, also called an input change (or update) operation. It combines a previous input
x = 〈x1, ..., xn〉 and an increment parameter y = 〈y1, ..., ym〉 to form an incremented input
x′ = 〈x′

1, ..., x
′
n〉 = x⊕y, where each x′

i is some function of xj ’s and yk’s. An input increment
operation we use for program optimization always has a corresponding decrement operation
prev such that for all x, y, and x′, if x′ = x ⊕ y then x = prev(x′). Note that y might or
might not be used. For example, an input increment operation to function m in Figure 1
could be 〈x′

1, x
′
2〉 = 〈x1, x2 + 1〉 or 〈x′

1, x
′
2〉 = 〈x1 − 1, x2〉, and the corresponding decrement

operations are 〈x1, x2〉 = 〈x′
1, x

′
2 − 1〉 and 〈x1, x2〉 = 〈x′

1 + 1, x′
2〉, respectively. An input

increment to a function that takes a list could be x′ = cons(y, x), and the corresponding
decrement operation is x = cdr(x′).

In Step 3, cached values that are not used for an incremental computation are pruned
away, yielding functions that cache, use, and maintain only useful values. Finally, the re-
sulting incremental program is used to form an optimized program. The optimized program
computes in an incremental fashion with step ⊕, caching and reusing results of subcompu-
tations as needed, and thus avoids repeatedly solving common subproblems.

For a function f in an original program, f denotes the function that caches all possibly
computed values of f , and f̂ denotes the pruned function that caches only useful values. We
use x to denote an unincremented input and use r, r, and r̂ to denote the return values of
f(x), f(x), and f̂(x), respectively. For any function f , we use f ′ to denote the incremental
function that computes f(x′), where x′ = x⊕ y, using cached results about x such as f(x).
So, f ′ may take parameter x′, as well as extra parameters each corresponding to a cached
result. Figure 2 summarizes the notation.

Function Return Value Denoted as Incremental Function
f original value r f ′

f all possibly computed values r f ′

f̂ useful values r̂ f̂ ′

Fig. 2. Notation.

3 Step 1: Caching All Possibly Computed Values

Consider a function f0 defined by a set of recursive functions. Program f0 may use global
variables, such as x and y in function c(i, j). A possibly computed value is the value of a
function call that is computed for some but not necessarily all values of the global variables.
For example, function c(i, j) computes the value of c(i−1, j−1) only when x[i] = y[j]. Such
values occur exactly in branches of conditional expressions whose conditions depend on any
global variable.

We construct a program f0 that caches all possibly computed values in f0. For exam-
ple, we extend c(i, j) to always compute the value of c(i −1, j −1) regardless of whether
x[i] = y[j]. We first apply a simple hoisting transformation to lift function calls out of condi-
tional expressions whose conditions depend on global variables. We then apply an extension

Dynamic Programming via Static Incrementalization 75

transformation to cache all intermediate results, i.e., values of all function calls, in the return
value.

3.1 Hoisting Transformation

Hoisting transformation Hst identifies conditional expressions whose condition depends on
any global variable and then applies the transformation

Hst [[if e1 then e2 else e3]] = let v2 = e2 in
let v3 = e3 in
if e1 then v2 else v3

For example, the hoisting transformation leaves m and msub unchanged and transforms c
into

c(i, j) � if i = 0 ∨ j = 0 then 0
else let u1 = c(i− 1, j − 1) + 1 in

let u2 = max(c(i, j − 1), c(i− 1, j)) in
if x[i] = y[j] then u1 else u2

Hst simply lifts up the entire subexpressions in the two branches, not just the function calls
in them. Administrative simplification performed at the end of the extension transformation
will unwind bindings for computations that are used at most once in subsequent computa-
tions; thus computations other than function calls will be put down into the appropriate
branches then. Hst is simple and efficient. The resulting program has essentially the same
size as the original program, so Hst does not increase the running time of the extension
transformation or the running times of the later incrementalization and pruning.

If we apply the hoisting transformation on arbitrary conditional expressions, the result-
ing program may run slower, become nonterminating, or have errors introduced, since the
transformed program may perform certain computations not performed in some branches of
the original program. By applying the hoisting transformation only on conditional expres-
sions whose conditions depend on global variables, our assumption in Section 2 eliminates
the last two problems. The first problem is discussed in Section 6.

3.2 Extension Transformation

For each hoisted function definition f(v1, ..., vn) � e, we construct a function definition

f(v1, ..., vn) � Ext [[e]]
where Ext [[e]], defined in [38], extends an expression e to return a nested tuple that contains
the values of all function calls made in computing e, i.e., it examines subexpressions of e
in applicative order, introduces bindings that name the results of function calls, builds up
tuples of these values together with the values of the original subexpressions, and passes
these values from subcomputations to enclosing computations. The first component of a
tuple corresponds to an original return value. Next, administrative simplifications clean
up the resulting program. This yields a program f0 that embeds values of all possibly
computed function calls in its return value. For the hoisted programs m and c, the extension
transformation produces the following functions:

m(i, j) � if i = j then < 0 > else msub(i, j, i)

msub(i, j, k) � let v1 = m(i, k) in
let v2 = m(k + 1, j) in
let s = 1st(v1) + 1st(v2) + p[i−1] ∗ p[k] ∗ p[j] in
if k + 1 = j then < s, v1, v2 >

else let v = msub(i, j, k + 1) in
< min(s, 1st(v)), v1, v2, v >

76 Yanhong A. Liu and Scott D. Stoller

c(i, j) � if i = 0 ∨ j = 0 then < 0 >
else let v1 = c(i− 1, j − 1) in

let v2 = c(i, j − 1) in
let v3 = c(i− 1, j) in
if x[i] = y[j] then < 1st(v1) + 1, v1, v2, v3 >
else < max(1st(v2), 1st(v3)), v1, v2, v3 >

We have m(i, j) = 1st(m(i, j)) and c(i, j) = 1st(c(i, j)).

4 Step 2: Static Incrementalization

The essence of our method is to transform a program to use and maintain cached values
efficiently as the computation proceeds. This is done by incrementalizing f0 with respect
to an input increment operation ⊕, i.e., we transform f0(x ⊕ y) to use the cached value of
f0(x) rather than compute from scratch.

An input increment operation ⊕ describes a minimal update to the input parameters.
We first describe a general method for determining ⊕. We then give a method, called static
incrementalization, that constructs an incremental version f ′ for each function f in the
extended program and allows an incremental function to have multiple parameters that
represent cached values.

4.1 Determining Input Increment Operation

An input increment reflects how a computation proceeds. In general, a function may have
multiple ways of proceeding, depending on the particular computations involved. There is no
general method for identifying all of them or the most appropriate ones. Here we propose a
method that can systematically identify a general class of them. The idea is to use a minimal
input change that is in the opposite direction of change compared to arguments of recursive
calls. Using the opposite direction of change yields an increment; using a minimal change
allows maximum reuse, i.e., maximum incrementality.

Consider a recursively defined function f0. Formulas for the possible arguments of
recursive calls to f0 in computing f0(x) can be determined statically. For example, for
function c(i, j), recursive calls to c have the set of possible arguments Sc = {〈i− 1,
j− 1〉, 〈i, j− 1〉, 〈i− 1, j〉}, and for function m(i, j), recursive calls to m have the set of
possible arguments Sm = {〈i, k〉, 〈k +1, j〉 | i ≤ k ≤ j−1}. The latter is simplified from
Sm = {〈a, c〉, 〈c+1, b〉 | a ≤ c ≤ b−1, a = i, b = j} where a, b, c are fresh variables that
correspond to i, j, k in msub; the equalities are based on arguments of the function calls
involved (in this case calls to msub); the inequalities are obtained from inequalities on these
arguments (in the where-clause of msub). The simplification here, as well as the manipula-
tions below, can be done automatically using Omega [51], a system for manipulating linear
constraints over integer variables, Presburger formulas, and integer tuple relations and sets.

Represent the arguments of recursive calls so that the differences between them and x
are explicit. For function c, Sc is already in this form, and for function m, Sm is rewritten as
{〈i, j − l〉, 〈i + l, j〉 | 1 ≤ l ≤ j − i}. Then, extract minimal differences that cover all of these
recursive calls. The partial ordering on differences is: a difference involving fewer parameters
is smaller; a difference in one parameter with smaller magnitude is smaller; other differences
are incomparable. A set of differences covers a recursive call if the argument to the call
can be obtained by repeated application of the given differences. So, we first compute the
set of minimal differences and then remove from it each element that is covered by the
remaining elements. For function c, we obtain {〈i, j − 1〉, 〈i − 1, j〉}, and for function m,
we obtain {〈i, j − 1〉, 〈i + 1, j〉}. Elements of this set represent decrement operations prev.
Finally, take the opposite of each decrement operation to obtain an increment operation
⊕, introducing a parameter y if needed (e.g., for increments that use data constructions).
For function c, we obtain 〈i, j + 1〉 and 〈i + 1, j〉, and for function m, we obtain 〈i, j + 1〉
and 〈i − 1, j〉. Although finding input increment operations is theoretically hard in general

Dynamic Programming via Static Incrementalization 77

(and a decrement operation might not have an inverse, in which case our algorithm does not
apply), it is usually straightforward.

Typically, a function that involves repeatedly solving common subproblems contains
multiple recursive calls to itself. If there are multiple input increment operations, then any
one may be used to incrementalize the program and then form an optimized program; the rest
may be used to further incrementalize the resulting optimized program, if it still involves
repeatedly solving common subproblems. For example, for program c, either 〈i, j + 1〉 or
〈i+1, j〉 leads to a final optimized program that takes polynomial time; the resulting program
does not contain multiple recursive calls that solve common subproblems. For program m,
either 〈i−1, j〉 or 〈i, j+1〉 leads to an optimized program that is an exponential factor faster,
but the program still contains multiple recursive calls that solve common subproblems and
takes exponential time; incrementalizing that program again under the other increment
operation leads to a final optimized program that takes polynomial time. In other words,
both 〈i− 1, j〉 and 〈i, j + 1〉 need to be used, and they may be used in either order.

4.2 Static Incrementalization

Given a program f0 and an input increment operation ⊕, incrementalization symbolically
transforms f0(x′) for x′ = x ⊕ y to replace subcomputations with retrievals of their values
from the value r of f0(x). This exploits equality reasoning, based on control and data
structures of the program and properties of primitive operations. The resulting program
f0

′ uses r or parts of r as additional arguments, called cache arguments, and satisfies: if
f0(x) = r and f0(x′) = r ′, then f0

′(x′, r) = r ′.
Note. In previous papers, we defined f0

′ slightly differently: if f0(x) = r and f0(x⊕ y) = r ′,
then f0

′(x, y, r) = r ′. This difference is insubstantial since when incrementalization is used
for program optimization, as we do here, both x and y (if it is used) can be obtained from x′.��
The idea is to establish the strongest invariants we can, especially those about cache ar-
guments, for each function at all calls of it and maximize the usage of the invariants. At
the end, unused candidate cache arguments are eliminated. Reducing running time corre-
sponds to maximizing uses of invariants; reducing space corresponds to maintaining weakest
invariants that suffice for all uses. It is important that the methods for establishing and us-
ing invariants are not only powerful but also systematic so that they are automatable. The
algorithm is described below. Its use is illustrated afterwards using the running examples.

The algorithm starts with transforming f0(x′) for x′ = x⊕y and f0(x) = r and first uses
the decrement operation to establish an invariant about function arguments. More precisely,
it starts with transforming f0(x′) with invariant f0(prev(x′)) = r, where r is a candidate
cache argument. It may use other invariants about x′ if given. Invariants given or formed
from the enclosing conditions and bindings are called context. The algorithm transforms
function applications recursively. There are four cases at a function application f(e′1, ..., e

′
n).

(i) If f(e′1, ..., e
′
n) specializes, by definition of f , under its context to a base case, i.e., an

expression with no recursive calls, then replace it with the specialized expression.
Example. For function application f(e) with definition f(x) � if x ≤ 0 then 0 else g(x)
and context e = 0, we specialize f(e) to 0.

(ii) Otherwise, if f(e′1, ..., e
′
n) equals a retrieval from a cache argument based on an invariant

about the cache argument that holds at f(e′1, ..., e
′
n), then replace it with the retrieval.

Example. If invariant f(e) = 2nd(r) holds at function application f(e), then we replace
f(e) with 2nd(r).

(iii) Otherwise, if an incremental version f ′ of f has been introduced, then replace f(e′1, ..., e
′
n)

with a call to f ′ if the invariants associated with f ′ can be maintained; if some invariants
cannot be maintained, then eliminate them and retransform from where f ′ was intro-
duced. Maintaining invariants includes maintaining both the invariants about a cache

78 Yanhong A. Liu and Scott D. Stoller

argument, which have the form of a function application equaling a retrieval from a
cache argument, and the other usual invariants.
Example. After introducing f0

′(x′, r) to compute f0(x′) with invariant f0(prev(x′)) = r,
we replace f0(e) by f0

′(e, 3rd(r)) if we have f0(prev(e)) = 3rd(r).
Example. After introducing f ′(x, r1, r2) to compute f(x) with invariants f(x− 1) = r1,
f(x−2) = r2, and x > 0, if we encounter a function application f(e) at which f(e−1) =
er1 holds for some er1 but neither f(e− 2) = er2 for any er2 nor e > 0 can be inferred,
then we retransform from where f ′ was introduced and introduce f ′(x, r1) with only
invariant f(x− 1) = r1.

(iv) Otherwise, introduce an incremental version f ′ of f and replace f(e′1, ..., e
′
n) with a call

to f ′, as described below.

In general, the replacement in Case (i) is also done, repeatedly, if the specialized expression
contains only recursive calls whose arguments are closer to, and will equal after a bounded
number of such replacements, arguments for base cases or arguments for which retrievals
can be done. Since a bounded number of invariants are used at a function application, as
described below, the retransformation in Case (iii) happens at most a bounded number of
times, so the algorithm always terminates; in the worst case, no invariants can be maintained
and used, and f ′ is the same as f . Since f is just one function in the given program; the
final program that uses f ′ after Step 3 might or might not be faster than the original
program. There is no way to tell in general which is the case, but for the class of dynamic
programming problems we consider, it can be conservatively determined that the original
programs always contain repeated recursive calls and thus take exponential time, and the
final programs proceed in nested linear fashion and thus take polynomial time.

Case (iv) To introduce an incremental version f ′ of f at f(e′1, ..., e
′
n), we (iv.1) determine

candidate invariants associated with f ′ based on the invariants that hold at f(e′1, ..., e
′
n) and

(iv.2) obtain a definition of f ′ based on the definition of f and the candidate invariants.
Finally, we (iv.3) replace f(e′1, ..., e

′
n) with a call to f ′.

Case (iv.1) To determine candidate invariants associated with f ′, let Inv be the set of
invariants about a cache argument or in the context that hold at f(e′1, ..., e

′
n). Invariants

about a cache argument are of the form gi(ei1, ..., eini
) = eri, where eri is either a candidate

cache argument in the enclosing environment or a selector applied to such an argument.
Invariants in the context are of a form given, e.g., i ≤ j for m(i, j), or of the form e = true,
e = false, or v = e obtained from enclosing conditions or bindings. For simplicity, we assume
that all bound variables are renamed so that they are distinct.
Example. As an example for Step (iv.1), consider function application msub(i′, j′, i′), and
assume that invariants about a cache argument, msub(i′, j′ −1, i′) = r and m(i′, j′ −1) = r,
and invariants in the context, i′ ≤ j′, i′ �= j′, and i′ �= j′ −1, hold at the application.

We are introducing f ′(x′′
1 , ..., x′′

n, ...) to compute f(x′′
1 , ..., x′′

n) for x′′
1 = e′1, ..., x

′′
n = e′n,

where x′′
1 , ..., x′′

n are fresh variables, and the second ... in the parameters of f ′ denote the
cache arguments to be determined. So we deduce invariants about x′′

1 , ..., x′′
n based on Inv

and x′′
1 = e′1, ..., x

′′
n = e′n.

Example. For the example above, we let msub ′ compute msub(i′′, j′′, k′′) for i′′ = i′, j′′ = j′,
and k′′ = i′, and deduce invariants about i′′, j′′, and k′′.

The deduction has four steps.

(1) Use equations e′1 = x′′
1 , ..., e′n = x′′

n to try to eliminate all variables in Inv other than
those in eri’s. This can be done automatically using Omega [51].
Example. For the example above, we give the following formula to Omega:
∃i′, j′ : msub(i′, j′ −1, i′) = r, m(i′, j′ −1) = r, i′ ≤ j′, i′ �= j′, i′ �= j′ − 1,

i′ = i′′, j′ = j′′, i′ = k′′

Dynamic Programming via Static Incrementalization 79

and we obtain the following result:
msub(i′′, j′′ −1, i′′) = r, m(i′′, j′′ −1) = r, i′′ ≤ j′′ − 2, k′′ = i′′

(2) Remove resulting invariants that still use variables in Inv other than those in eri’s.
Example. For the example above, this has no effect.

(3) Use equations relating x′′
1 , ..., x′′

n to add additional forms of other invariants. This is done
as follows: if x′′

j = x′′
k or x′′

k = x′′
j is a resulting equation, and i is another resulting

invariant that involves x′′
j , then for each invariant i′ that can be obtained by replacing

some occurrences of x′′
j in i with x′′

k , add i′ to the resulting set of invariants.
Example. For the example above, this yields
msub(i′′, j′′−1, i′′)=r, msub(i′′, j′′−1, k′′)=r, m(i′′, j′′−1)=r, i′′ ≤ j′′−2, k′′= i′′,
msub(k′′, j′′−1, i′′)=r, msub(k′′, j′′−1, k′′)=r, m(k′′, j′′−1) = r, k′′ ≤ j′′−2,

(4) For each invariant about a cache argument, replace its right side with a fresh variable.
Example. For the above example, six fresh variables, r1 to r6, are used to replace the
right sides of the invariants about a cache argument.

We call the resulting invariants candidate invariants; each of them either uses only variables
x′′

1 , ..., x′′
n or is of the form gi(e′′i1, ..., e

′′
ini

) = ri, where e′′i1, ..., e
′′
ini

use only variables x′′
1 , ..., x′′

n

and ri is a fresh variable. They are now associated with f ′, which has arguments x′′
1 , ..., x′′

n

and candidate cache arguments ri’s.
Given invariants Inv and equations x′′

1 = e′1, ..., x
′′
n = e′n, the set of strongest invariants

about x′′
1 , ..., x′′

n, expressed using no other variables in Inv except those in eri’s, are in general
uncomputable. However, the deduction using Omega in (1) allows us to obtain such invari-
ants automatically when only Presburger arithmetic is involved, which is the case for all the
dynamic programming problems we consider. The removal in (2) allows us to fall back to
weaker invariants in the general cases. The additional forms in (3) allow us to, when some
invariants deduced can not be maintained at other calls to f , keep the strongest subset of
invariants that can be obtained based on direct equalities.

Case (iv.2) To obtain a definition of f ′, first unfold f(x′′
1 , ..., x′′

n). Then exploit control
structures, i.e., conditionals in f(x′′

1 , ..., x′′
n) and gi(e′′i1, ..., e

′′
ini

)’s, and data structures, i.e.,
components in ri’s, together with other candidate invariants associated with f ′. Exploiting
data structures allows us to use not only a cached result as a whole but also components
of it. Exploiting control structures helps us obtain different forms of cached results under
different conditions.

(1) To exploit conditionals in f(x′′
1 , ..., x′′

n), in the unfolded expression, move function appli-
cations into branches of the conditionals whenever possible, preserving control depen-
dencies incurred by the order of conditional tests and data dependencies incurred by
the bindings. This allows transformations of function applications to use as many con-
ditions in their contexts as possible. This is done by repeatedly applying the following
transformation in applicative, i.e., leftmost and innermost first, order to the unfolded
expression:

For any expression t(e1, ..., ek),
being c(e1, ...,ek), p(e1, ...,ek), f(e1, ...,ek), if e1 then e2 else e3, or let v = e1 in e2:
if subexpression ei is if ei1 then ei2 else ei3

where if t is a conditional, i �= 2, 3, and
if t is a binding expression, i �= 2 or ei1 does not depend on v,

then transform t(e1, ..., ek) to
if ei1 then t(e1, ..., ei−1, ei2, ei+1, ..., ek) else t(e1, ..., ei−1, ei3, ei+1, ..., ek).

Example. If the unfolded expression is let v = h(e) in if e1 then e2 else e3, where e1

does not depend on v, then we transform it to if e1 then let v = h(e) in e2 else let v =
h(e) in e3.

80 Yanhong A. Liu and Scott D. Stoller

This transformation preserves the semantics. It may increase the code size, but it does
not increase the running time of the resulting program.

(2) To exploit the conditionals in gi(e′′i1, ..., e
′′
ini

)’s, first choose, among gi(e′′i1, ..., e
′′
ini

)’s that
are applications of f , one whose arguments differ minimally from x′′

1 , ..., x′′
n, denote it

f(e′′1 , ..., e′′n), and call it the corresponding previous application. If the corresponding pre-
vious application is found, then introduce in the expression obtained from (1) conditions
that appear in f(e′′1 , ..., e′′n), and put function applications inside both branches that fol-
low such a condition. Again, this allows transformations of function applications to use
as many conditions in their contexts as possible and, in particular, to use different forms
of cached values from f(e′′1 , ..., e′′n) under different conditions. This is done by applying
the following transformation in outermost-first order to the conditionals in the expression
obtained from (1):

For each branch e of a conditional that contains a function application:
let e′ be the condition of the leftmost and outermost conditional in f(e′′1 , ..., e′′n)

such that the context of e does not imply e′ and does not imply ¬e′;
if e′ uses only variables defined in the context of e and takes constant time to com-

pute, and the two branches in f(e′′1 , ..., e′′n) that are conditioned on e′ contain
different function applications in some component

then transform e to if e′ then e else e.
Example. If a branch e of a conditional is ...h(x − 1)..., the corresponding previous
application f(x − 1) by definition equals if x − 1 = 0 then < 0 > else < e1, e2 >,
and the context of e does not imply whether x − 1 = 0 or not, then transform e to
if x− 1 = 0 then e else e.
Exploiting conditionals in the corresponding previous application f(e′′1 , ..., e′′n) is a heuris-
tic. In general, one may exploit conditionals in all gi(e′′i1, ..., e

′′
ini

)’s; afterwards, condi-
tionals whose two branches are the same are optimized by eliminating the condition and
merging the two branches. We use this heuristic here since it simplifies the transforma-
tions and is sufficient for all examples we have seen. The rationale is that the arguments
e′′1 , ..., e′′n differ minimally from x′′

1 , ..., x′′
n, so the values of f(e′′1 , ..., e′′n) under various con-

ditions are most likely to be reused in computing f(x′′
1 , ..., x′′

n).
(3) To exploit each component in a candidate cache argument ri where there is an invariant

gi(e′′i1, ..., e
′′
ini

) = ri, for each branch in the transformed expression from (2), specialize
gi(e′′i1, ..., e

′′
ini

) under the context of that branch. This may yield additional invariants that
are equalities between function applications and components of ri. It does not change
the resulting expression from (2).
Example. Continuing the above example, if f(x − 1) = r is an invariant at e, and if e2

is h(x − 1), then specializing f(x − 1) under x − 1 �= 0 yields h(x − 1) = 2nd(r). This
invariant will enable one to replace h(x− 1) in e in the else-branch with 2nd(r).

After these control structures and data structures are exploited, we perform the following
transformations on the expression from (2) in applicative order: we simplify subexpressions
using algebraic properties and transform function applications recursively based on the four
cases described.

Case (iv.3) After we finish transforming the expression for defining f ′, we eliminate dead
code. Finally, after we obtain a definition of f ′, replace the function application f(e′1, ..., e

′
n)

with a call to f ′ with arguments e′1, ..., e
′
n and cache arguments eir’s for the invariants used.

After an application of f , other than the initial application f0(x′), is replaced by an
application of f ′, if f ′ is not recursively defined, then we unfold the application of f ′ and
repeat transformations (1) to (3) in (iv.2) on the enclosing expression that will become
the body of the enclosing function. This enables, in defining the enclosing function, more
exploitation of control structures and data structures based on the conditionals and binding
expressions in the unfolded application of f ′. This may increase the code size but not the
running time of the resulting program.

Dynamic Programming via Static Incrementalization 81

4.3 Longest Common Subsequence

Incrementalize c under 〈i′, j′〉 = 〈i + 1, j〉. We start with c(i′, j′), with cache argument r
and invariant c(prev(i′, j′)) = c(i′ − 1, j′) = r; the invariants i′, j′ > 0 may also be included
but do not affect any transformation below, so for brevity, we omit them. This is case (iv),
so we introduce incremental version c ′ to compute c(i′, j′). Unfolding the definition of c
and exploiting control structures according to (1) and (2) in (iv.2), we obtain the code
below, where the annotations on the right are explained in the two paragraphs that follow.
In particular, according to (2) in (iv.2), the false branch of c(i′, j′) is duplicated and put
inside both branches of the additional condition i′ − 1 = 0 ∨ j′ = 0, which is copied from
the condition in the corresponding previous application c(i′ − 1, j′); for convenience, the
three function applications bound to v1 through v3 are not put inside branches that follow
condition x[i′] = y[j′], since their transformations are not affected, and simplification at the
end can take them back out.

c(i′, j′) with invariant c(i′ − 1, j′) = r
=
if i′ = 0 ∨ j′ = 0 then < 0 >
else if i′ − 1 = 0 ∨ j′ = 0 then context includes: i′ − 1 = 0

let v1 = c(i′ − 1, j′ − 1) in =<0>
let v2 = c(i′, j′ − 1) in = c ′(i′, j′−1, c(i′−1, j′−1)) = c ′(i′, j′−1, <0>)
let v3 = c(i′ − 1, j′) in =<0>
if x[i′] = y[j′] then < 1st(v1) + 1, v1, v2, v3 >
else < max(1st(v2), 1st(v3)), v1, v2, v3 >

else context includes: i′ �=0, i′−1 �=0, j′ �=0
let v1 = c(i′ − 1, j′ − 1) in = 3rd(r)
let v2 = c(i′, j′ − 1) in = c ′(i′, j′−1, c(i′−1, j′−1)) = c ′(i′, j′−1, 3rd(r))
let v3 = c(i′ − 1, j′) in = r
if x[i′] = y[j′] then < 1st(v1) + 1, v1, v2, v3 >
else < max(1st(v2), 1st(v3)), v1, v2, v3 >

In the second branch (lines 2–7), i′ −1 = 0 is true, since j′ = 0 would imply that the first
branch is taken. Therefore, the first and third calls fall in case (i) and specialize to < 0 >.
The second call falls in case (iii) and equals a recursive call to c ′ with arguments i′, j′ −1
and cache argument <0>, since we have a corresponding invariant c(i′ −1, j′ −1) = <0>
from specialization. Additional simplification unwinds bindings for v1 and v3, simplifies
1st(<0>) + 1 to 1, and simplifies max(1st(v2), 1st(<0>)) to 1st(v2).

In the third branch (lines 8–13), condition i′−1 = 0∨j′ = 0 is false; under this condition,
the corresponding previous application c(i′−1, j′) by definition of c equals its second branch
where c(i′−1, j′−1) is bound to v2, and thus the invariant c(i′−1, j′) = r implies c(i′−1, j′−1) =
3rd(r). Therefore, in this third branch, the first call falls in case (ii) and equals 3rd(r). The
second call falls in case (iii) and equals a recursive call to c ′ with arguments i′, j′ −1 and
cache argument 3rd(r) since we have a corresponding invariant c(i′−1, j′−1) = 3rd(r). The
third call falls in case (ii) and equals r. We obtain

c ′(i′, j′, r) � if i′ = 0 ∨ j′ = 0 then < 0 >
else if i′ − 1 = 0 then

let v2 = c ′(i′, j′ − 1, < 0 >) in
if x[i′] = y[j′] then < 1, < 0 >, v2, < 0 >>
else < 1st(v2), < 0 >, v2, < 0 >>

else let v1 = 3rd(r) in
let v2 = c ′(i′, j′ − 1, 3rd(r)) in
let v3 = r in
if x[i′] = y[j′] then < 1st(v1) + 1, v1, v2, v3 >
else < max(1st(v2), 1st(v3)), v1, v2, v3 >

82 Yanhong A. Liu and Scott D. Stoller

If r = c(i′ − 1, j′), then c ′(i′, j′, r) = c(i′, j′), and c ′ takes time and space linear in j′,
for caching and maintaining a linear list. It is easy to see that c ′ takes linear time, since
c ′(i′, j′, ...) only calls c ′(i′, j′ − 1, ...) recursively, and j′ = 0 is a base case. It is also easy to
see that c ′ takes linear space, since each call to c ′ creates a tuple of length no more than 4.

4.4 Matrix-Chain Multiplication

Incrementalize m under 〈i′, j′〉 = 〈i, j + 1〉. We start with m(i′, j′), with cache argument r
and invariants m(i′, j′ − 1) = r and i′ ≤ j′. This is case (iv), so we introduce incremental
version m ′ to compute m(i′, j′). Unfolding m, exploiting control structures according to (1)
and (2) in (iv.2), and specializing the second branch according to case (i), we obtain the
code below.

m(i′, j′) = if i′ = j′ then < 0 >
else if i′ = j′ − 1 then < p[i′ −1] ∗ p[i′] ∗ p[j′], < 0 >,< 0 >>

else msub(i′, j′, i′)

(1)

In the third branch, condition i′ = j′ −1 is false; under this condition, m(i′, j′ −1) by
definition of m equals msub(i′, j′ −1, i′), and thus the invariant m(i′, j′ −1) = r implies
msub(i′, j′ −1, i′) = r. The call msub(i′, j′, i′) falls in case (iv). We introduce msub ′ to
compute msub(i′′, j′′, k′′) for i′′ = i′, j′′ = j′, k′′ = i′, with collected invariants

msub(i′, j′ −1, i′) = r, m(i′, j′ −1) = r, i′ ≤ j′, i′ �= j′, i′ �= j′ −1 (2)

where the first two are about cache arguments; the third is given; and the last two are
from the enclosing conditionals, in concise form, rather than, e.g., (i′ = j′) = false, for ease
of reading. According to (iv.1), we express these invariants as invariants on i′′, j′′, k′′ using
Omega, and introduce fresh variables ri for candidate cache arguments. We obtain candidate
invariants associated with msub ′:

msub(i′′, j′′−1, k′′) = r1, m(i′′, j′′−1) = r2, i′′ ≤ j′′ − 2, k′′ = i′′,
msub(i′′, j′′−1, i′′) = r3, k′′ ≤ j′′ − 2,

msub(k′′, j′′−1, k′′) = r4, m(k′′, j′′−1) = r5,

msub(k′′, j′′−1, i′′) = r6,

(3)

The arguments of msub(i′′, j′′ − 1, k′′) have a minimum difference from the arguments of
msub(i′′, j′′, k′′), and thus msub(i′′, j′′ − 1, k′′) is the corresponding previous application
according to (2) in (iv.2).

Unfolding msub(i′′, j′′, k′′) and exploiting control structures according to (1) and (2) in
(iv.2), we obtain the code below, where the annotations on the right are explained in the
four paragraphs that follow. In particular, according to (1) in (iv.2), the code for v1 and v2

is duplicated and moved into both branches that follow the condition k′′+1 = j′′. According
to (2) in (iv.2), in the else-branch, the code for v is duplicated and put inside both branches
that follow the additional condition k′′ + 1 = j′′ − 1, which is copied from the condition in
the corresponding previous application msub(i′′, j′′− 1, k′′); for convenience, the code for v1

and v2 is not put inside branches that follow k′′ + 1 = j′′ − 1, since their transformations
are not affected, and simplification at the end can take them back out.

msub(i′′, j′′, k′′) start with invariants in (3),
= later with k′′= i′′ eliminated
if k′′ + 1 = j′′ then

let v1 = m(i′′, k′′) in
let v2 = m(k′′ + 1, j′′) in
let s = 1st(v1) + 1st(v2) + p[i′′ −1] ∗ p[k′′] ∗ p[j′′] in
< s, v1, v2 >

Dynamic Programming via Static Incrementalization 83

else context includes: k′′ + 1 �= j′′

let v1 = m(i′′, k′′) in =<0> or 2nd(r1), where the former uses k′′= i′′

let v2 = m(k′′ + 1, j′′) in = m ′(k′′+1, j′′,m(k′′+1, j′′−1))
= m ′(k′′ +1, j′′, 3rd(r1))

let s = 1st(v1) + 1st(v2) + p[i′′ −1] ∗ p[k′′] ∗ p[j′′] in
if k′′ + 1 = j′′ − 1 then context includes: k′′+1 = j′′−1

let v = msub(i′′, j′′, k′′ + 1) in = (4) below
< min(s, 1st(v)), v1, v2, v >

else context includes: k′′+1 �= j′′, k′′+1 �= j′′−1
let v = msub(i′′, j′′, k′′ + 1) in = msub ′(i′′, j′′, k′′+1,msub(i′′, j′′−1, k′′+1),
< min(s, 1st(v)), v1, v2, v > m(i′′, j′′−1),msub(i′′, j′′−1, i′′))

= msub ′(i′′, j′′, k′′+1, 4th(r1), r2, r3)
The first branch gets simplified away, since we have invariant k′′ ≤ j′′ − 2.

In the else-branch, the corresponding previous application msub(i′′, j′′−1, k′′) by defini-
tion of msub has m(i′′, k′′) bound to v1 and m(k′′+1, j′′−1) bound to v2, and thus the invari-
ant msub(i′′, j′′ − 1, k′′) = r1 implies m(i′′, k′′) = 2nd(r1) and m(k′′ + 1, j′′ − 1) = 3rd(r1).
The first call m(i′′, k′′) falls in case (i), since we have invariant k′′ = i′′, and equals < 0 >. The
second call falls in case (iii) and equals a recursive call to m ′ with arguments k′′ + 1, j′′ and
cache argument 3rd(r1), since we have a corresponding invariant m(k′′+1, j′′−1) = 3rd(r1).

In the branch where k′′ + 1 = j′′ − 1 is true, the call to msub falls in case (i) and equals

let v1 = m(i′′, j′′ − 1) in let v2 = m(j′′, j′′) in
let s = 1st(v1) + 1st(v2) + p[i′′ −1] ∗ p[k′′ + 1] ∗ p[j′′] in < s, v1, v2 >

(4)

which then equals < 1st(r2) + p[i′′ −1] ∗ p[k′′ + 1] ∗ p[j′′], r2, < 0 >>, because the first call
equals r2, and the second call equals < 0 >.

In the last branch, the call to msub falls in case (iii). However, the arguments of this call
do not satisfy the invariants corresponding to k′′ = i′′ or corresponding to those on the third
and fourth lines of the candidate invariants in (3). Specifically, the invariant corresponding
to k′′ = i′′ is k′′ +1 = i′′, which is false because the context includes k′′ = i′′; the others can
not be maintained because we can not infer that msub(k′′+1, j′′−1, k′′+1), m(k′′+1, j′′−1),
or msub(k′′ +1, j′′− 1, i′′) equals a retrieval from any cache argument r1 to r6. So we delete
these invariants and retransform msub. Everything remains the same except that m(i′′, k′′)
does not fall in case (i) any more; it falls in case (ii) and equals 2nd(r1). We replace this last
call to msub by a recursive call to msub ′ with arguments i′′, j′′, k′′ +1 and cache arguments
4th(r1), r2, r3 since we have corresponding invariants msub(i′′, j′′ −1, k′′ + 1) = 4th(r1),
m(i′′, j′′ −1) = r2, msub(i′′, j′′ −1, i′′) = r3.

We eliminate unused candidate cache argument r3, and we replace the original call
msub(i′, j′, i′) in (1) with msub ′(i′, j′, i′, r, r) according to (iv.3). We obtain

m ′(i′, j′, r) � if i′ = j′ then < 0 >
else if i′ = j′ − 1 then < p[i′ −1] ∗ p[i′] ∗ p[j′], < 0 >,< 0 >>

else msub ′(i′, j′, i′, r, r)

msub ′(i′′, j′′, k′′, r1, r2) �
let v1 = 2nd(r1) in
let v2 = m ′(k′′ + 1, j′′, 3rd(r1)) in
let s = 1st(v1) + 1st(v2) + p[i′′ −1] ∗ p[k′′] ∗ p[j′′] in
if k′′ + 1 = j′′ −1 then

let v = <1st(r2) + p[i′′ −1] ∗ p[k′′ + 1] ∗ p[j′′], r2, < 0 >> in
< min(s, 1st(v)), v1, v2, v >

else let v = msub ′(i′′, j′′, k′′ + 1, 4th(r1), r2) in
< min(s, 1st(v)), v1, v2, v >

84 Yanhong A. Liu and Scott D. Stoller

Note that for the six invariants about cache arguments, r1 to r6, in (3), r4 to r6 can not be
maintained at the recursive call and are weakened away; r3 can be maintained but is not
used and hence is eliminated; and r1 and r2 can be maintained and are used and hence are
kept.

For the resulting program m ′, if r = m(i′, j′ −1), then m ′(i′, j′, r) = m(i′, j′), and m ′

is an exponential factor faster. Function m ′ still takes exponential time due to repeated
recursive calls to m ′, since each m ′(i′, j′, ...) calls m ′(k′, j′, ...) for all k from i′ + 1 to
j′−1. Incrementalizing the resulting optimized program m(i, j) obtained from Step 3 under
〈i′, j′〉 = 〈i −1, j〉 yields a quadratic-time incremental program that involves no repeated
recursive calls.

5 Step 3: Pruning Unnecessary Values
The first component of f0

′(x′, r) is the return value of f0(x′). Components of r that are not
useful for computing this value need not be cached and maintained. We prune the programs
f0 and f0

′ to obtain a program f̂0 that caches only the useful values and a program f̂0
′

that uses and maintains only the useful values. Finally, we form an optimized program that
computes f0 by using the base cases in f̂0 and by repeatedly using the incremental version f̂0

′.

5.1 Pruning

Pruning requires a dependence analysis that can precisely describe substructures of trees [38].
We use an analysis based on regular tree grammars [31, 35]. We have designed and imple-
mented a simple algorithm that uses regular tree grammar based constraints to efficiently
produce precise analysis results [33, 35]. Pruning can save space and time and reduce code
size.

For example, in program c ′, only the third component of r is useful. Pruning the second
and fourth components of c and c ′, which makes the third component become the second
component, and doing a few simplifications, which transform 1st(c) back to c and unwind
bindings for v1 and v3, we obtain ĉ and ĉ ′ below:

ĉ (i, j) � if i = 0 ∨ j = 0 then < 0 >
else let v2 = ĉ (i, j − 1) in

if x[i] = y[j] then < c(i− 1, j − 1)) + 1, v2 >
else < max(1st(v2), c(i− 1, j))), v2 >

ĉ ′(i′, j′, r̂) � if i′ = 0 ∨ j′ = 0 then < 0 >
else if i′ − 1 = 0 then

let v2 = ĉ′(i′, j′ − 1, < 0 >) in
if x[i′] = y[j′] then < 1, v2 >
else < 1st(v2), v2 >

else let v2 = ĉ ′(i′, j′ − 1, 2nd(r̂)) in
if x[i′] = y[j′] then < 1st(2nd(r̂)) + 1, v2 >
else < max(1st(v2), 1st(r̂)), v2 >

It is easy to see that ĉ ′, like c ′, also takes time and space linear in j, but each call to ĉ ′

creates a tuple of length no more than 2, compared to 4 for c ′.
Pruning leaves programs m and m ′ unchanged. We obtain the same programs m̂ and

m̂ ′, respectively.
The first components of these functions remain unchanged, so we have m(i, j) =

1st(m̂(i, j)) and c(i, j) = 1st(ĉ (i, j)).

5.2 Forming Optimized Programs

We redefine functions f0 and f̂0 and use function f̂0
′:

f0(x) � 1st(f̂0(x))
f̂0(x) � if base_cond(x) then base_val(x) else let r̂ = f̂0(prev(x)) in f̂0

′(x, r̂)

Dynamic Programming via Static Incrementalization 85

where base_cond is the base-case condition, and base_val is the corresponding value, both
copied from the original definition of f̂0 obtained by pruning. This new definition of f̂0 is
called the optimized f̂0. In general, there may be multiple base cases, and we just list them
all; to be conservative, we may include here all cases not containing multiple recursive calls.

For examples c and m, we obtain directly

c(i, j) � 1st(ĉ (i, j))
ĉ (i, j) � if i = 0 ∨ j = 0 then < 0 > else let r̂ = ĉ (i− 1, j) in ĉ ′(i, j, r̂)

m(i, j) � 1st(m̂(i, j))
m̂(i, j) � if i = j then < 0 > else let r̂ = m̂(i, j − 1) in m̂ ′(i, j, r̂)

It is easy to see that ĉ (i, j) takes O(i ∗ j) time, since it only calls ĉ (i − 1, j) recursively,
and i = 0 is a base case; each call to ĉ calls ĉ ′, and ĉ ′ takes O(j) time. Thus, for c(n,m),
while the original program takes O(2n+m) time, the optimized program takes O(n∗m) time.
For m(1, n), while the original program takes O(n ∗ 3n) time, the optimized program takes
O(n2 ∗ 2n) time. Incrementalizing the optimized program again under the increment to the
other parameter allows us to obtain a final optimized program that takes O(n3) time; the
time complexity of the final optimized program is also easy to analyze.

The precise exponential complexities are not as easy to see, but for the purpose of our
optimization, it is sufficient to know that they are exponential due to repeated recursive
calls.

6 Summary and Discussion

To summarize, we emphasize that it is the incremental computation under step ⊕ that
determines appropriate values to cache so as to avoid repeated subcomputations. It yields a
kind of regularity, in particular linearity, that we think is important for efficient computation.
Correctness. The transformations for caching, incrementalization, and pruning together pre-
serve semantics in the sense that if the original f̂0(x′) terminates with a value, then the
incremental program f̂0

′(x′, r̂), given r̂ = f̂0(prev(x′)), terminates with the same value and
is asymptotically at least as fast. This is because each transformation preserves semantics
except that unfolding function definitions and eliminating unused values may make the re-
sulting program terminate more often. Possible problems associated with hoisting causing
f̂0 to compute values not computed in the original program f0 are avoided as described
in Section 3.1 and below. Forming optimized programs is straightforward for all the prob-
lems we have encountered, and it is easy to see that the resulting programs are correct,
but a rigorous and general correctness argument for this needs further research. Overall,
these transformations together preserve semantics in the sense that if the original program
terminates with a value, then the optimized program terminates with the same value.
Mechanization. Our method for dynamic programming is composed completely of static
program analyses and transformations and is systematic. It is based on a general approach for
program optimization—incrementalization—which helps it to be systematic. The analyses
and transformations used for caching and pruning are fully automatic and highly efficient [35,
38]. The analyses and transformations for incrementalization are fully automatic modulo
the simplifications and equality reasoning used for establishing and using invariants. Such
simplifications and equalities needed for all the problems we have encountered involve only
Presburger arithmetic [51] and simple facts about recursive data structures and thus can be
fully automated; for the same reason, determining input increment operations can also be
fully automated. Also, as we have seen, forming optimized programs is straightforward to
automate. Characterizing the exact class of problems to which these automated techniques
apply needs further study.
Monovariance. Although our static incrementalization allows only one incremental version
for each original function, i.e., is monovariant, it is still powerful enough to incrementalize all

86 Yanhong A. Liu and Scott D. Stoller

examples in [37,38,40], including various list manipulations, matrix computations, attribute
evaluation, and graph problems. In general, while monovariant analyses and transformations
are usually simpler and more efficient, they might not be sufficiently powerful when a function
is used in multiple contexts for different roles. To overcome this potential problem, we
propose to introduce a new function for each function composition that appears in the
original program. This is based on the observation that different roles of a function are
usually played in its composition with other functions. This method does not involve creating
copies of existing functions, as is usually done but often causes code blowup and needs
additional heuristics. We believe that the method based on static incrementalization can
achieve dynamic programming for all problems whose solutions involve recursively solving
subproblems that overlap, but a formal justification awaits more rigorous study.
Space usage and data structures. In our method, only values that are necessary for the
incrementalization are stored, in appropriate data structures. For the longest-common-
subsequence example, only a linear list is needed, whereas in standard textbooks, a quadratic
two-dimensional array is used, and an additional optimization is needed to reduce it to a
one-dimensional array [15]. For the matrix-chain multiplication example, our optimized pro-
gram uses a list of lists that forms a triangle shape, rather than a two-dimensional array of
square shape. It is nontrivial to see that recursive data structures give the same asymptotic
speedup as arrays for some examples. Our recent work on transforming recursion into iter-
ation can help eliminate the linear stack space used [36]. There are dynamic programming
problems, e.g., 0-1 knapsack, for which the use of an array, with constant-time access to
elements, helps achieve desired asymptotic speedups. Such situations become evident when
doing incrementalization and can be accommodated easily, as is described in [39]. Although
we present the optimizations for a functional language, the underlying principle is general
and has been applied to programs that use loops and arrays [30,34].
Auxiliary information. Some values computed in a hoisted program might not be computed
by the original program and are therefore called auxiliary information [37]. Both incremen-
talization and pruning produce programs that are at least as fast as the given program, but
caching auxiliary information may result in a slower program on certain inputs. We can de-
termine statically whether such information is cached in the final program. If so, we can use
time and space analysis [32, 55, 60–62] to determine conservatively whether it is worthwhile
to use and maintain such information. The trade-off between time and space is an open
problem for future study.
Additional properties. Many dynamic programming algorithms can be further improved by
exploiting additional properties, such as greedy properties [7], of the given problems. For
example, Hu and Shing [22,23] give an O(n∗ log n)-time algorithm for the matrix-chain mul-
tiplication problem. Our method is not aimed at discovering such properties. Nevertheless,
it can help preserve such properties once they are added. For example, for the paragraph-
formatting problem [15, 18], we can derive a quadratic-time algorithm that uses dynamic
programming; if the original program contains a simple extra conditional that follows from
a kind of thinning property, our derived dynamic programming program uses it as well and
takes linear time with a factor of line width. How to systematically discover and use such
additional properties in general is a subject for future study.

7 Implementation and Experimentation Results

All three steps—caching, incrementalization, and pruning—have been implemented in a
prototype system, CACHET, using the Synthesizer Generator [54]. Incrementalization as
currently implemented is semiautomatic [29] and is being automated [64]. Determining input
increment operations and forming optimized programs are currently done manually, but both
are straightforward for all the problems we have encountered.

Dynamic Programming via Static Incrementalization 87

Figure 3 summarizes some of the examples derived, most of them semiautomatically
and some automatically. The second column shows whether more than one cache argument
is needed in an incremental program. The third column shows whether the incremental
program computes values not necessarily computed by the original program. For the last
two examples, the letter “a” in the third column shows that cached values are stored in arrays.
The last two columns compare the asymptotic running times of the original programs and
the optimized programs. For Fibonacci function, n is the input number, rather than the size
of the input, and the running time is the numbers of additions performed. The matrix-chain
multiplication, optimal binary search tree, and optimal polygon triangulation problems have
similar control structures for recursive calls, which is reflected in the running times; yet, the
optimal costs for these problems are computed in different ways, and our general method
handles all of them in the same systematic manner. Paragraph formatting 2 [18] includes a
conditional that reflects a greedy property, as described in Section 6.

Examples multiple
cache arg

aux
info

original program’s
running time

optimized prog’s
running time

Fibonacci function [46] O(2n) O(n)

binomial coefficients [46] O(2n) O(n ∗ k)

longest common subsequence [15]
√

O(2n+m) O(n ∗ m)

matrix-chain multiplication [15]
√

O(n ∗ 3n) O(n3)

string editing distance [53] O(3n+m) O(n ∗ m)

dag path sequence [6]
√

O(2n) O(n2)

optimal polygon triangulation [15]
√

O(n ∗ 3n) O(n3)

optimal binary search tree [2]
√

O(n ∗ 3n) O(n3)

paragraph formatting [15]
√

O(n ∗ 2n) O(n2)

paragraph formatting 2
√

O(n ∗ 2n) O(n ∗ width)

0-1 knapsack [15]
√

a O(2n) O(n ∗ weight)

context-free-grammar parsing [2]
√ √

a O(n∗(2∗size+1)n) O(n3 ∗ size)

Fig. 3. Summary of examples.

To measure and compare the actual running times, we translated some of the programs
into Java. The translation is straightforward, where tuples are implemented using class
Vector. Other languages could be used, but Java is particularly good for testing whether
caching additional information could incur a significant overhead in running time on small
input, since operations on objects of the Vector class in Java are relatively expensive com-
pared with operations on constructed data in languages such as ML, Scheme, or C.

Figure 4 presents the running times of the straightforward programs and the optimized
programs for some examples; results for other examples are similar. Stars indicate running
times longer than 48 hours. These measurements were taken for programs compiled with
Sun JDK 1.0.2 and running on a Sun Ultra 10 with 300 MHz UltraSPARC-IIi CPU and
128 MB main memory. One can see that the optimized programs run much faster than the
straightforward programs even on small inputs.

8 Related Work and Conclusion

Dynamic programming was first formulated by Bellman [4], where “programming” refers to
the use of tabular solution method, and has been studied extensively since [59]. Bird [5],
de Moor [17], and others have studied it in the context of program transformation. While
some work addresses the derivation of recursive equations, including the original work by
Bellman [4] and the later work by Smith [58], our work addresses the derivation of efficient
programs that use tabulation. Previous methods for this problem either apply to specific

88 Yanhong A. Liu and Scott D. Stoller

input binomial coefficients longest comm. subseq. matrix-chain multipl. paragraph formatting
size original optim. original optim. original optim. original optim.

10 0 0 10 5 42 16 10 5
15 3 1 185 7 7453 23 111 7
20 305 2 36250 9 3282564 75 3712 10
25 4924 3 1454555 16 ******* 180 123360 16
40 2436874 6 ******* 60 ******* 752 ****** 68
60 ******* 11 ******* 113 ******* 2617 ****** 157
80 ******* 15 ******* 211 ******* 6187 ****** 325

100 ******* 20 ******* 383 ******* 11846 ****** 714

Fig. 4. Running times of original programs and optimized programs (in milliseconds).

subclasses of problems [11, 13, 14, 24, 47, 49] or give general frameworks or strategies rather
than precise derivation algorithms [3, 5, 6, 8, 9, 16, 17, 46, 48, 56, 57, 63]. Our work is based on
the general principle of incrementalization [37, 45] and consists of precise program analyses
and transformations.

In particular, tupling [9, 47, 48] aims to compute multiple values together in an efficient
way. It is improved to be automatic on subclasses of problems [11] and to work on more
general forms [13]. It is also extended to store lists of values [49], but such lists are generated
in a fixed way, which is not the most appropriate way for many programs. A special form of
tupling can eliminate multiple data traversals for many functions [24]. A method specialized
for introducing arrays was proposed for tabulation [12], but as our method has shown, arrays
are not essential for the speedup of many programs. Also, that method relies on explicit
coding of the appropriate increment operation in the original function; it is not clear how to
code the original function when multiple increment operations are needed, such as for the
matrix chain multiplication problem. To summarize, no previous method can perform all
the powerful optimizations our method can. Each of our examples is nontrivial and requires
advanced algorithm design discipline to derive even by hand.

Compared with our previous work for incrementalizing functional programs [37, 38, 40],
this work contains several substantial improvements. First, our previous work addresses the
systematic derivation of an incremental program f ′ given both program f and operation ⊕.
This paper describes a systematic method for identifying an appropriate operation ⊕ given a
function f and forming an optimized version of f using the derived incremental program f ′.
Second, since it is difficult to introduce appropriate cache arguments, our previous method
allows at most one cache argument for each incremental function. This paper allows multiple
cache arguments, without which many programs could not be incrementalized, e.g., the
matrix-chain multiplication program. Third, our previous method introduces incremental
functions using an on-line strategy, i.e., on-the-fly during the transformation, so it may
attempt to introduce an unbounded number of new functions and thus not terminate. The
algorithm in this paper introduces one incremental function for each function in the original
program, i.e., it is monovariant; even though it is theoretically more limited, it is simpler,
always terminates, and is able to incrementalize all previous examples. Finally, based on
the idea of cache-and-prune [38], the method in this paper uses hoisting to extend the set
of intermediate results [38] to include a kind of auxiliary information [37] that is sufficient
for dynamic programming. This method is simpler than our previous general method for
discovering auxiliary information [37]. Additionally, we now use a more precise and efficient
dependence analysis for pruning [35].

Finite differencing [43–45] is based on the same underlying principle as incremental com-
putation. Fifteen years ago, Paige explicitly asked whether finite differencing can be gen-
eralized to handle dynamic programming [43]; it is clear that he perceived an important
connection. However, finite differencing has been formulated for set expressions in while
loops [45], which can be obtained from fixed-point specifications [10], while straightforward

Dynamic Programming via Static Incrementalization 89

solutions to dynamic programming problems are usually formulated as recursive functions,
so it has been difficult to establish the exact connection. A major open problem is how to
transform general recursive functions into set expressions extended with fixed-point opera-
tions [10].

Overall, being able to incrementalize complicated recursion in a general and systematic
way is a substantial improvement complementing previous methods for incrementalizing
loops [30, 45]. Our new method based on static incrementalization is both powerful and
automatable. Based on our existing implementation, we believe that a complete system will
perform incrementalization efficiently.

Acknowledgments

The authors would like to thank the anonymous referees for many helpful comments and
suggestions.

References

1. M. Abadi, B. Lampson, and J.-J. Lévy: Analysis and caching of dependencies. In Pro-
ceedings of the 1996 ACM Sigplan International Conference on Functional Programming,
83–91. ACM, New York, 1996.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

3. F. L. Bauer, B. Möller, H. Partsch, and P. Pepper: Formal program construction by
transformations—Computer-aided, intuition-guided programming. IEEE Trans. Softw.
Eng., 15(2):165–180, Feb. 1989.

4. R. E. Bellman: Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.
5. R. S. Bird: Tabulation techniques for recursive programs. ACM Comput. Surv.,

12(4):403–417, Dec. 1980.
6. R. S. Bird: The promotion and accumulation strategies in transformational program-

ming. ACM Trans. Program. Lang. Syst., 6(4):487–504, Oct. 1984.
7. R. S. Bird and O. de Moor: From dynamic programming to greedy algorithms. In

B. Möller, H. Partsch, and S. Schuman, editors, Formal Program Development, volume
755 of Lecture Notes in Computer Science, 43–61. Springer, Berlin, 1993.

8. E. A. Boiten: Improving recursive functions by inverting the order of evaluation. Sci.
Comput. Program., 18(2):139–179, Apr. 1992.

9. R. M. Burstall and J. Darlington: A transformation system for developing recursive
programs. J. ACM, 24(1):44–67, Jan. 1977.

10. J. Cai and R. Paige: Program derivation by fixed point computation. Science of Com-
puter Programming, 11:3, 197–261, 1989.

11. W.-N. Chin: Towards an automated tupling strategy. In Proceedings of the ACM Sigplan
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, 119–132.
ACM, New York, 1993.

12. W.-N. Chin and M. Hagiya: A bounds inference method for vector-based memoization.
In ICFP 1997 [26], 176–187, 1997.

13. W.-N. Chin and S.-C. Khoo: Tupling functions with multiple recursion parameters. In
P. Cousot, M. Falaschi, G. Filè, and A. Rauzy, editors, Proceedings of the 3rd Interna-
tional Workshop on Static Analysis, volume 724 of Lecture Notes in Computer Science,
124–140. Springer, Berlin, Sept. 1993.

14. N. H. Cohen: Eliminating redundant recursive calls. ACM Trans. Program. Lang. Syst.,
5(3):265–299, July 1983.

15. T. H. Cormen, C. E. Leiserson, and R. L. Rivest: Introduction to Algorithms. The MIT
Press/McGraw-Hill, 1990.

90 Yanhong A. Liu and Scott D. Stoller

16. S. Curtis: Dynamic programming: A different perspective. In R. Bird and L. Meertens,
editors, Algorithmic Languages and Calculi, 1–23. Chapman & Hall, London, UK, 1997.

17. O. de Moor: A generic program for sequential decision processes. In M. Hermenegildo
and D. S. Swierstra, editors, Programming Languages: Implementations, Logics, and
Programs, volume 982 of Lecture Notes in Computer Science, 1–23. Springer, Berlin,
1995.

18. O. de Moor and J. Gibbons: Bridging the algorithm gap: A linear-time functional pro-
gram for paragraph formatting. Technical Report CMS-TR-97-03, School of Computing
and Mathematical Sciences, Oxford Brookes University, July 1997.

19. J. Field and T. Teitelbaum: Incremental reduction in the lambda calculus. In Proceedings
of the 1990 ACM Conference on LISP and Functional Programming, 307–322. ACM,
New York, 1990.

20. D. P. Friedman, D. S. Wise, and M. Wand: Recursive programming through table look-
up. In Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation,
85–89. ACM, New York, 1976.

21. Y. Futamura and K. Nogi: Generalized partial evaluation. In B. Bjørner, A. P. Ershov,
and N. D. Jones, editors, Partial Evaluation and Mixed Computation, 133–151. North-
Holland, Amsterdam, 1988.

22. T. C. Hu and M. T. Shing: Computation of matrix chain products. Part I. SIAM J.
Comput., 11(2):362–373, 1982.

23. T. C. Hu and M. T. Shing: Computation of matrix chain products. Part II. SIAM J.
Comput., 13(2):228–251, 1984.

24. Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano: Tupling calculation eliminates multiple
data traversals. In ICFP 1997 [26], 164–175, 1997.

25. J. Hughes: Lazy memo-functions. In Proceedings of the 2nd Conference on Functional
Programming Languages and Computer Architecture, volume 201 of Lecture Notes in
Computer Science, 129–146. Springer, Berlin, Sept. 1985.

26. Proceedings of the 1997 ACM Sigplan International Conference on Functional Program-
ming. ACM, New York, 1997.

27. R. M. Keller and M. R. Sleep: Applicative caching. ACM Trans. Program. Lang. Syst.,
8(1):88–108, Jan. 1986.

28. H. Khoshnevisan: Efficient memo-table management strategies. Acta Informatica,
28(1):43–81, 1990.

29. Y. A. Liu: CACHET: An interactive, incremental-attribution-based program transfor-
mation system for deriving incremental programs. In Proceedings of the 10th IEEE
Knowledge-Based Software Engineering Conference, 19–26. IEEE CS Press, Los Alami-
tos, CA, 1995.

30. Y. A. Liu: Principled strength reduction. In R. Bird and L. Meertens, editors, Algorith-
mic Languages and Calculi, 357–381. Chapman & Hall, London, UK, 1997.

31. Y. A. Liu: Dependence analysis for recursive data. In Proceedings of the IEEE 1998 In-
ternational Conference on Computer Languages, 206–215. IEEE CS Press, Los Alamitos,
CA, 1998.

32. Y. A. Liu and G. Gómez: Automatic accurate cost-bound analysis for high-level lan-
guages. IEEE Transctions on Computers, 50(12):1295–1309, Dec. 2001.

33. Y. A. Liu, N. Li, and S. D. Stoller: Solving regular tree grammar based constraints. In
Proceedings of the 8th International Static Analysis Symposium, volume 2126 of Lecture
Notes in Computer Science, 213–233. Springer, Berlin, 2001.

34. Y. A. Liu and S. D. Stoller: Loop optimization for aggregate array computations. In
Proceedings of the IEEE 1998 International Conference on Computer Languages, 262–
271. IEEE CS Press, Los Alamitos, CA, 1998.

35. Y. A. Liu and S. D. Stoller: Eliminating dead code on recursive data. In Proceedings
of the 6th International Static Analysis Symposium, volume 1694 of Lecture Notes in
Computer Science, 211–231. Springer, Berlin, 1999.

Dynamic Programming via Static Incrementalization 91

36. Y. A. Liu and S. D. Stoller: From recursion to iteration: what are the optimizations? In
Proceedings of the ACM Sigplan 2000 Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, 73–82. ACM, New York, 2000.

37. Y. A. Liu, S. D. Stoller, and T. Teitelbaum: Discovering auxiliary information for
incremental computation. In Conference Record of the 23rd Annual ACM Symposium
on Principles of Programming Languages, 157–170. ACM, New York, 1996.

38. Y. A. Liu, S. D. Stoller, and T. Teitelbaum: Static caching for incremental computation.
ACM Trans. Program. Lang. Syst., 20(3):546–585, May 1998.

39. Y. A. Liu and S. D. Stoller. Program optimization using indexed and recursive data
structures. In Proceedings of the ACM Sigplan 2002 Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, 108–118. ACM, New York, 2002.

40. Y. A. Liu and T. Teitelbaum: Systematic derivation of incremental programs. Sci.
Comput. Program., 24(1):1–39, Feb. 1995.

41. D. Michie: “memo” functions and machine learning. Nature, 218:19–22, Apr. 1968.
42. D. J. Mostow and D. Cohen: Automating program speedup by deciding what to cache. In

Proceedings of the 9th International Joint Conference on Artificial Intelligence, 165–172.
Morgan Kaufmann Publishers, San Francisco, CA, Aug. 1985.

43. R. Paige: Programming with invariants. IEEE Software, 3(1):56–69, Jan. 1986.
44. R. Paige: Symbolic finite differencing—Part I. In N. D. Jones, editor, Proceedings of the

3rd European Symposium on Programming, volume 432 of Lecture Notes in Computer
Science, 36–56. Springer, Berlin, 1990.

45. R. Paige and S. Koenig: Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst., 4(3):402–454, July 1982.

46. H. A. Partsch: Specification and Transformation of Programs—A Formal Approach to
Software Development. Springer, Berlin, 1990.

47. A. Pettorossi: A powerful strategy for deriving efficient programs by transformation. In
Conference Record of the 1984 ACM Symposium on LISP and Functional Programming.
ACM, New York, 1984.

48. A. Pettorossi and M. Proietti: Rules and strategies for transforming functional and logic
programs. ACM Comput. Surv., 28(2):360–414, June 1996.

49. A. Pettorossi and M. Proietti: Program derivation via list introduction. In R. Bird and
L. Meertens, editors, Algorithmic Languages and Calculi. Chapman & Hall, London,
UK, 1997.

50. W. Pugh: An improved cache replacement strategy for function caching. In Proceedings
of the 1988 ACM Conference on LISP and Functional Programming, 269–276. ACM,
New York, 1988.

51. W. Pugh: The Omega Test: A fast and practical integer programming algorithm for
dependence analysis. Commun. ACM, 31(8):102–114, Aug. 1992.

52. W. Pugh and T. Teitelbaum: Incremental computation via function caching. In Con-
ference Record of the 16th Annual ACM Symposium on Principles of Programming Lan-
guages, 315–328. ACM, New York, 1989.

53. P. W. Purdom and C. A. Brown: The Analysis of Algorithms. Holt, Rinehart, and
Winston, 1985.

54. T. Reps and T. Teitelbaum: The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer-Verlag, New York, 1988.

55. M. Rosendahl: Automatic complexity analysis. In Proceedings of the 4th International
Conference on Functional Programming Languages and Computer Architecture, 144–156.
ACM, New York, 1989.

56. W. L. Scherlis: Program improvement by internal specialization. In Conference Record
of the 8th Annual ACM Symposium on Principles of Programming Languages, 41–49.
ACM, New York, 1981.

57. D. R. Smith: KIDS: A semiautomatic program development system. IEEE Trans. Softw.
Eng., 16(9):1024–1043, Sept. 1990.

92 Yanhong A. Liu and Scott D. Stoller

58. D. R. Smith: Structure and design of problem reduction generators. In B. Möller, editor,
Constructing Programs from Specifications, 91–124. North-Holland, Amsterdam, 1991.

59. M. Sniedovich: Dynamic Programming. Marcel Dekker, New York, 1992.
60. L. Unnikrishnan, S. D. Stoller, and Y. A. Liu: Automatic accurate stack space and heap

space analysis for high-level languages. Technical Report TR 538, Computer Science
Department, Indiana University, Apr. 2000.

61. L. Unnikrishnan, S. D. Stoller, and Y. A. Liu: Automatic accurate live memory analysis
for garbage-collected languages. In Proceedings of the ACM Sigplan 2001 Workshop
on Languages, Compilers, and Tools for Embedded Systems, 102–111. ACM, New York,
2001.

62. B. Wegbreit: Mechanical program analysis. Commun. ACM, 18(9):528–538, Sept. 1975.
63. B. Wegbreit: Goal-directed program transformation. IEEE Trans. Softw. Eng., SE-

2(2):69–80, June 1976.
64. Y. Zhang and Y. A. Liu: Automating derivation of incremental programs. In Proceed-

ings of the 1998 ACM Sigplan International Conference on Functional Programming,
page 350. ACM, New York, 1998.

Automatic Program Generation
from Formal Specifications using APTS

Elizabeth I. Leonard and Constance L. Heitmeyer∗

Center for High Assurance Computer Systems, Naval Research Laboratory, Code 5546,
Washington, DC 20375, USA.
{leonard,heitmeyer}@itd.nrl.navy.mil

Summary. A promising trend in software practice is the increasing adoption of model-driven de-
sign. In this approach, a developer first constructs an abstract specification of the required program
behavior in a language, such as Statecharts, Stateflow, or LUSTRE, and then uses a code generator
to automatically translate the specification into an executable program. This approach has major
advantages over more traditional approaches. First, because a specification is more concise, it is
usually more understandable than code, and hence manual inspections can detect more errors in
specifications than in code. Second, a specification is also more amenable to both user validation
(e.g., via simulation) and formal verification, which together provide high confidence that the spec-
ification captures the desired behavior. Finally, the automatic generation of source code usually
produces software with fewer errors than handcrafted code. This paper describes a case study in
which Bob Paige’s program transformation system APTS was used to produce code generators that
construct C source code from a requirements specification in the SCR (Software Cost Reduction)
tabular notation. Two different code generation strategies were explored. The first strategy uses
rewrite rules to transform the parse tree of an SCR specification into a parse tree for the corre-
sponding C code. The second strategy associates a relation with each node of the specification parse
tree. Each member of this relation acts as an attribute, holding the C code corresponding to the
tree at the associated node; the root of the tree has the entire C program as its member of the
relation. This paper describes the two code generators, how each was used to synthesize code for
two example SCR requirements specifications, and lessons learned about APTS from the case study.

Keywords: automatic program derivation, formal specifications, code generation strategies, pro-
gram transformation, program validation.

1 Introduction

In developing complex software, a formal specification of the system’s required behavior
can be extremely useful. Such a specification can be (1) formally verified to show that it
satisfies critical properties and (2) validated using simulation to show that it captures the
intended system behavior. Additionally, because specifications contain much less detail than
programs, users find specifications easier to understand than code and hence find more errors
in specifications than in code.

Using both inspections and software analysis tools, users can develop high confidence
that a formal specification is correct. Unfortunately, high assurance in the correctness of the
specification does not guarantee that the system implementation is correct, since the im-
plementation is often separately developed with no formal link to the specification. In such
cases, some confidence in the correctness of the actual code can be achieved by testing, but
that confidence is only as good as the tests that are applied. One way to transfer high con-
fidence in the specification to the implementation is to automatically generate the program
∗ This research was funded by the Office of Naval Research.

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 93–113.
c© 2008 Springer.

94 Elizabeth I. Leonard and Constance L. Heitmeyer

code from the specification, thus eliminating errors introduced by hand-coding. Such an ap-
proach is a promising and growing trend in current software practice: Increasingly, software
developers are writing specifications in languages such as Statecharts [14], LUSTRE [12],
and Mathwork’s Stateflow [8] and then using automatic code generators to transform these
specifications into executable code.

A program transformation system such as Cai and Paige’s APTS [6, 37, 38] can be ex-
tremely useful in developing an automatic code generator. APTS, which is implemented
in SETL2 [45], is an improved version of Paige’s earlier RAPTS system [35]. It includes
a syntax analyzer, which uses a given grammar to parse a specification; a relational data-
base, which accumulates information about the specification needed during code generation;
and a transformation engine. Code can be generated either in the relational database or
via the transformation engine. APTS also includes optimization techniques, such as finite
differencing [35,36], a technique for optimizing code by replacing frequently repeated calcu-
lations with less expensive incremental updates. Cai and Paige used APTS [6] to implement
translators from SETL2 [45] and SQ2+ [5] to C.

Unlike Statecharts, Stateflow, and LUSTRE, which were developed to capture software
designs, SCR (Software Cost Reduction) is a language for specifying software requirements,
i.e., the required externally visible behavior of a software system. The SCR language and
method have been applied successfully by many organizations in industry and government
(e.g., Bell Laboratories [23], Grumman [33], Lockheed [10], the Naval Research Labora-
tory [19,29], Ontario Hydro [39], and Rockwell Aviation [34]) to develop and analyze speci-
fications of practical systems, including flight control systems [10,34], weapons systems [19],
space systems [9], and cryptographic devices [29]. The SCR toolset [18] provides a user-
friendly interface for writing requirements specifications in the SCR tabular notation and
several analysis tools, including a consistency checker [21], simulator [20], model checker [19],
theorem prover [3], and invariant generator [24,28]. A context-free grammar is the underly-
ing communication medium for the different tools. By applying the SCR tools, a user can
develop high confidence that a specification is a correct statement of the required behavior.

Once an SCR specification has been formally verified and validated via simulation, a
logical next step is to automatically construct executable code from the SCR specification.
This paper describes a case study in which APTS was used to generate C code from SCR
requirements specifications. Using APTS, two code generation strategies were investigated.
The first strategy, which uses only the APTS relational database, applies rewrite rules to
transform code in the source language into target language code. The source language used
for these experiments was the SCR specification language and the target language was C.
The transformations modify the parse tree of the requirements specification, replacing each
node containing SCR code with a new node containing the corresponding C code. The second
strategy, which used both the APTS relational database and its transformation engine, treats
the code to be generated as a synthesized attribute of the parse tree of the SCR specification.
A relation is developed that associates target language code with each node in the parse tree
of the source language program. In the relational model, the code associated with a given
node is formed by combining the code for the node’s children with additional code specific
for the node and the result is stored in a relation. In both strategies, auxiliary information
(e.g., variable dependencies) is stored in relations. Frequently a node of the parse tree is
the key for the relation. In these cases, the relations are analogous to the attributes in an
attribute grammar [30].

The use in APTS of a relational database to store attribute information has important
advantages over traditional attribute grammars. In APTS, information can be passed directly
from one node to any other node via pattern matching in the relational database, while
in an attribute grammar, information must flow along a path through the tree. Although
any attribute grammar can be augmented with auxiliary data structures to hold inherited
attributes for lookup, the relational database used by APTS is an integral part of the system,

Program Generation using APTS 95

holding all attribute information. Also, APTS allows relations to be defined over domains
other than nodes of the parse tree. For example, the tree domain allows attribute information
to be assigned to all nodes representing the same term. Such a tree relation can be used to
assign the same attribute value to all occurrences of a variable at the same time. In contrast,
in a traditional attribute grammar, this information must be passed around the tree.

Our study used APTS because its flexible framework allowed us to experiment with the
two different code generation strategies described above. Because both approaches required
common information about an SCR specification, we were able to reuse a large portion of
the first generator in the implementation of the second. Similar experiments could have been
conducted with other systems, such as REFINE [41] or the Synthesizer Generator [42], but
both rely on attribute grammars and thus suffer from the restrictions on information flow
and the absence of the built-in auxiliary data structures described above. An additional
advantage of APTS over the Synthesizer Generator is that program transformations in
APTS are automatic rather than interactive as in the Synthesizer Generator and may be
conditioned on information stored in the relations. However, the primary advantage of APTS
over other systems is its built-in optimization capabilities. In our case study, we planned to
make use of the APTS finite differencing engine, but the lack of adequate documentation
for the finite differencing engine prevented us from doing so.

This paper is organized as follows. Section 2 reviews APTS and SCR and describes the
C code that can be generated from SCR specifications. Section 3 describes in more detail
the two strategies for generating C code described above, one based on rewrite rules and
the second based on the accumulating relation approach. Section 4 describes the results
of applying the code generators to an SCR requirements specification of a cryptographic
device [29]. It also compares the two strategies, discusses what we learned by implement-
ing them in APTS, and describes our recent research on generating optimized code from
SCR specifications [43]. Section 5 discusses related work. Finally, Section 6 presents some
conclusions and describes our plans for future work.

2 Background

2.1 APTS

From a given grammar, the APTS syntax analyzer builds parse trees for input files. Each
node of the parse tree forms the root of a subtree corresponding to the SCR syntax for that
portion of the specification. The grammar used to specify SCR in APTS is described in [31].

The relational database is built using a set of inference rules. These rules usually consist
of three parts: a pattern to match a portion of the parse tree, a set of conditions (logical
combinations of relations) under which a new member of a relation is added to the database,
and a result portion stating which new member to add to a relation in the database. Pattern
matching variables, whose names in APTS begin with a dot, are used to correlate portions
of the pattern matching condition with the relations appearing in the rule’s condition and
result portions or to correlate information contained in different relations in the rule. For
example, the following rule states that if an expression composed of two subexpressions
separated by a “>” is found in the parse tree such that the two subexpressions are members
of the arithexpr relation, then the matched expression (denoted by loc()) is added to the
relation boolexpr:
match(%expr, .x > .y%)| arithexpr(.x) and arithexpr(.y)

-> boolexpr(loc());\vspace*{-6pt}

Relations are predicates whose arguments can be taken from several possible domains. Fre-
quently, nodes in the parse tree serve as keys for relations. Thus, these relations may be
viewed as attributes of the parse tree. Since there are no restrictions on which relations
can be in the condition of an inference rule for a relation, both synthesized and inherited
attributes can be defined in APTS in terms of relations. However, not every relation in the

96 Elizabeth I. Leonard and Constance L. Heitmeyer

implementation need be a parse tree attribute. For example, in SCR specifications, the value
of a variable may depend on the current value of another variable. During execution of the
corresponding C code, the values of variables must be updated in an order that respects
these dependencies. Thus, this dependency information is necessary for code generation. In
the implementations, the dependency relation between variables is implemented as a relation
defined over pairs of strings (the variable names). Relations in APTS are grouped together
into transcripts. To execute a transcript, the inference engine partially instantiates all ap-
plicable rules from the transcript and then nondeterministically tries to complete them until
there are no more rules that can be instantiated.

APTS also allows user-defined SETL2 routines to be used to add relations to the data-
base. The user specifies an interface in APTS for each SETL2 routine, stating which relations
the routine receives as input and the relations it will produce upon execution. The SCR-to-
C code generators use a SETL2 routine to calculate the order in which variables are to be
updated based on the information in the dependency relation.

In addition to using the relational database, the code generator based on rewrite rules
also uses the APTS transformation engine. It uses a set of rewrite rules to transform the
parse tree, replacing SCR language constructs with the corresponding C code. These rewrite
rules match a pattern in the tree and if the conditions for the rule are met, the tree is
transformed into the given replacement tree. For example, the rule equal below states that
if an expression consisting of two subexpressions separated by “=” is found in the parse tree,
then that piece of the tree is rewritten in C-style, with the “=” replaced by “==”. Rewrite
rules can be read as matching a piece of the parse tree and if the given conditions are met,
the matched part of the parse tree is replaced by the tree given inside the rewrite.

equal: match(%expr, .x = .y%) |true ->
rewrite(%expr, .x == .y%);

In APTS, rewrite rules are collected into groups called closures. When a closure is applied to
the parse tree, the transformation engine works bottom up on the tree, nondeterministically
applying rules from the closure to the tree until no more rules can be applied. In our
implementation, we apply closures in a certain order to guarantee that certain rules will
be applied before others.

2.2 SCR Specifications

Originally formulated to document the requirements of the flight program of the US Navy’s
A-7 aircraft [22], the SCR requirements method is designed to detect and correct errors
during the requirements phase of software development [17, 21]. In SCR, the required be-
havior of a software system is defined in terms of monitored and controlled variables, which
represent quantities in the system environment that the system monitors and controls. A
set of assumptions describes the constraints imposed on the monitored and controlled quan-
tities by physical laws and the system environment, and a relation on the monitored and
controlled variables describes how the system is required to change the values of the con-
trolled quantities in response to changes in the values of the monitored quantities. A set of
assertions describes properties, such as security and safety properties, that the specification
is expected to satisfy.

To specify the required behavior of a software system in a practical and efficient manner,
the A-7 requirements document introduced two kinds of predicates—conditions and events—
and two kinds of auxiliary variables—mode classes and terms. Conditions and events are
defined in terms of the system state, where a system state is a function that maps each state
variable (a monitored, controlled, or auxiliary variable) to a type-correct value. A condition
is a predicate defined on a single system state, while an event is a predicate defined on
two system states that denotes some change in the values of the state variables between
those states. An event “occurs” if it evaluates to true for a given pair of consecutive states. A

Program Generation using APTS 97

monitored event occurs when the value of a monitored variable changes. A conditioned event,
which has the form “@T(c) WHEN d”, occurs if an event occurs (i.e., condition c becomes
true) when a specified condition d is true. A mode class may be viewed as a state machine,
whose states are called modes and whose transitions are triggered by events. A term is a
state variable, defined in terms of monitored variables, mode classes, or other terms. Mode
classes and terms capture history—the changes that occurred in the values of the monitored
variables—and help make the specification more concise.

SCR specifications include two kinds of tables: condition tables and event tables. Each
defines the value of a dependent variable (a controlled or auxiliary variable) by means of a
mathematical function. Usually, a condition table defines a variable as a function of a mode
and a condition, and an event table defines a variable as a function of a mode and an event.

The purpose of the SCR requirements model [21] is to provide a precise semantics for the
notation used in SCR requirements specifications. The model defines a conditioned event
“@T(c) WHEN d” as

@T(c) WHEN d = ¬c ∧ c′ ∧ d (1)

where c and d are conditions, and the unprimed c denotes c in the old state and the primed
c denotes c in the new state. The model also defines the functions that can be derived from
the SCR tables. In the SCR model, a software system Σ is represented as a state machine
Σ = (S, S0, E

m, T), where S is a set of states, S0 ⊆ S is the initial state set, Em is the
set of monitored events, and T is the transform describing the allowed state transitions. To
compute the new state, the transform T composes the functions derived from the condition
and event tables. For T to be well defined, no circular dependencies are allowed in the
definitions of the new state variable values. To achieve this, the model requires the new
state dependencies (i.e., dependencies among the new values of the state variables) to be a
partial order of the state variables.

While an SCR specification is represented as a collection of tables, the underlying com-
munication medium between the SCR tools is a context-free grammar. An abstract grammar
for SCR can be found in [31]. This grammar focuses on the basic syntax of the constructs,
omitting the precedence rules needed for unambiguous parsing. The abstract grammar is
similar to the grammars used by our APTS implementations to parse SCR specifications.
However, those grammars contain modifications, including precedence rules, necessary for
unambiguous parsing.

The syntax of the language is best illustrated by an example. Below is the specification
of a simplified version of a control system for safety injection (SIS) in a nuclear power
plant [7]. (The line numbers are not part of the actual specification. They are included for
ease of reference.) The SIS system monitors water pressure and if the pressure is too low,
the system injects coolant into the reactor core. There are three monitored variables in this
specification (lines 9–11).1 The first is mWaterPres, which represents the actual value of water
pressure. The other two monitored variables are switches—mBlock, a switch that overrides
safety injection, and mReset, a switch that resets the system after blockage. An assumption
of the specification is that the water pressure will not change by more than 10 units at a time
(lines 18–21). A mode class mcPressure, with three possible values TooLow, Permitted, and
High, associates the pressure with the appropriate range (lines 16–17). At any given time,
the system must be in one and only one of these modes. The term variable tOverridden
(lines 14–15) is true if safety injection is blocked, and false otherwise. The specification
contains one controlled variable, cSafety_Injection, which represents a switch indicating
whether the safety injection is on or off (lines 12–13). The value of each dependent variable
is defined by a table function. Event tables define the value of the mode class mcPressure
(lines 24–39) and the term variable tOverridden (lines 40–47). A condition table defines the

1 By convention, the names of monitored variables begin with “m”, of controlled variables begin
with “c”, of terms begin with “t”, and of mode classes begin with “mc”. The names of user-defined
types begin with “y”, and the names of types associated with mode classes begin with “type_”.

98 Elizabeth I. Leonard and Constance L. Heitmeyer

value of the controlled variable cSafety_Injection (lines 48–60). The tabular format of the
function definitions on lines 24–60 can be found in [31].
1 spec Safety_Injection_System
2 type definitions
3 ySwitch: enum in {Off, On};
4 type_mcPressure: enum in {TooLow, Permitted,High};
5 yWPres: integer in [0, 2000];
6 constant definitions
7 Low=900:integer;
8 Permit=1000:integer;
9 monitored variables

10 mWaterPres: yWPres, initially 0;
11 mBlock, mReset: ySwitch, initially Off;
12 controlled variables
13 cSafety_Injection: ySwitch, initially On;
14 term variables
15 tOverridden: boolean, initially false;
16 mode classes
17 mcPressure: type_mcPressure, initially TooLow;
18 assumptions
19 A1: (mWaterPres’ >= mWaterPres AND mWaterPres’-
20 mWaterPres <=10) OR (mWaterPres’ < mWaterPres
21 AND mWaterPres - mWaterPres’ <= 10);
22 assertions
23 function definitions
24 var mcPressure :=
25 case mcPressure
26 [] TooLow
27 ev
28 [] @T(mWaterPres >= Low) -> Permitted
29 ve
30 [] Permitted
31 ev
32 [] @T(mWaterPres >= Permit) -> High
33 [] @T(mWaterPres < Low) -> TooLow
34 ve
35 [] High
36 ev
37 [] @T(mWaterPres < Permit) -> Permitted
38 ve
39 esac
40 var tOverridden :=
41 ev
42 [] (@T(mBlock=On) WHEN (mReset=Off AND
43 NOT(mcPressure = High))) -> true
44 [] (@T(mReset=On) WHEN NOT(mcPressure = High))
45 OR @T(mcPressure = High)
46 OR @T(NOT(mcPressure = High))-> false
47 ve
48 var cSafety_Injection ==
49 case mcPressure
50 [] TooLow
51 if
52 [] tOverridden -> Off
53 [] NOT tOverridden -> On
54 fi
55 [] Permitted, High
56 if
57 [] false -> On
58 [] true -> Off
59 fi
60 esac

Program Generation using APTS 99

2.3 C Code Generated From SCR Specifications

An SCR specification contains several sections. Code must be generated from each section.
Additionally, code is needed to drive the reactive program. In practice, this code would be
replaced by the device driver software for the system. This section describes the C code
generated from an SCR specification. The format of the C code to be generated is given as
part of the grammar file in APTS. Our synthesizers produce code that is very closely related
to the SCR specification. This makes correspondence between the specification and the code
easy to observe.

Some pieces of code are generated for every specification. At the beginning of each
generated code file are two file pointers, infile and outfile, which will be associated with
the input and output files that drive the reactive program. Also included are input and
output routines for boolean values (represented internally by the integer constants false =
0 and true = 1).

For every SCR specification, the corresponding C code contains a header file “scr-
header.h”. This header file is exactly the same for every specification and is not generated by
APTS. This file contains definitions of formats for reading and writing strings and integers.
For example, the string output format macro is defined as # define strformout "%s\n".
Defining these format routines in a header file that is not generated by APTS is necessary
because APTS treats the "%" as a special character that cannot appear in relations or rewrite
rules. The file also contains definitions used by the generated C code. For example, boolean
and integer are defined as additional names for the C type int; and false, true, AND,
OR, and NOT are defined as corresponding C code values and operators. None of these def-
initions is strictly necessary, but they are included to make the C code resemble the SCR
specification.

Type Definitions

Both SCR and C support enumerated types. However, unlike C, SCR allows overloading of
value names in enumerated types. To handle this soundly in our encoding, we simply prepend
the type name to each enumerated value. For example, the value Off of the enumerated type
ySwitch in the SCR specification is transformed into ySwitch_Off in the C type definition.

/* type definitions and range declarations */
enum ySwitch { ySwitch_Off , ySwitch_On } ;
typedef enum ySwitch ySwitch ;\vspace*{-4pt}

Each enumerated type also requires special input and output routines to convert the value
names used in the specification to the corresponding value names used in the C code, and
vice versa.

The user-defined range types in SCR have no counterpart in C. In the generated C code,
the name of the range type becomes an alias for integer, and a check function is created
to correspond to the range of the type. Each time a variable with a range type is assigned
a value, the corresponding check function is called to ensure that the value is within the
specified range. The SIS example contains one range type, yWPres, with the range [0,2000].
Below is the C code corresponding to this range type.

define yWPres int
void check_yWPres (char * name, int value) { if ((value

< 0) OR (value > 2000)) {printf(" value out of
range : "); printf (strformout, name); } }

Constant Definitions

The generated C code for an SCR constant definition is a straightforward rearrangement of
the SCR definition. Below is the C code generated for the constant definitions of the SIS
example.

100 Elizabeth I. Leonard and Constance L. Heitmeyer

/* constant definitions */
const integer Low = 900 ;
const integer Permit = 1000 ;

Variable Declarations
In an SCR specification, x represents the value of variable x in the old state, and x′ represents
the value of x in the new state. To refer to both the old and new values of the variable x,
the generated C code represents each variable x in the SCR specification by two variables,
x and prime_x. Initial values, if given, are defined by constants. (In SCR specifications, the
initial value of a dependent variable can often be derived from the initial values of variables
upon which the variable depends.) The name given to these constants is constructed by
prepending init_val_ to the name of the first variable in the declaration. For example,
the initial value for mBlock and mReset is named init_val_mBlock. Below is the C code
corresponding to the declaration of the monitored variables. The other variable declarations
may be transformed into C code in a similar way.
/* monitored variables */

yWPres mWaterPres; yWPres prime_mWaterPres;
const yWPres init_val_mWaterPres = 0;

ySwitch mBlock, mReset; ySwitch prime_mBlock,
prime_mReset;

const ySwitch init_val_mBlock = ySwitch_Off;

Assumptions and Assertions

In SCR, assumptions and assertions are predicates describing relationships between the vari-
ables. These logical formulas may refer to both the old and new state values of the variables
and can use a full range of logical operators. Event expressions may also appear in predicates
and are expanded using definition (1). Each assumption or assertion in the specification is
transformed into an evaluation function which returns true if the predicate is true and false
otherwise. Additionally, two functions, check_assumptions and check_assertions, which
call these functions and produce an error message if a predicate is false, are generated if
there are assumptions and assertions in the SCR specification. The violation of an assump-
tion indicates that the input does not obey the assumed environmental constraints. If an
assertion is violated, then the specification does not satisfy a property that it was expected
to satisfy. The code we generate for assumptions and assertions is not a necessary part of an
implementation of the SCR specification. We generate the evaluation and check functions
to provide information on violations of expected behaviors for use in simulation. In the SIS
example, an evaluation function is generated for the assumption A1 along with the function
check_assumptions which calls the evaluation function. There are no assertions in SIS, so
the function check_assertions is not generated.

/* assumptions */
boolean eval_A1() {return((prime_mWaterPres >=

mWaterPres AND prime_mWaterPres - mWaterPres <= 10) OR
(prime_mWaterPres < mWaterPres AND mWaterPres -
prime_mWaterPres <= 10)) ; } ;

void check_assumptions () {
if (eval_A1() == false) printf (" A1 violated \n ");

}
/* assertions */

Function Definitions
As stated in Section 2.2, each dependent variable in an SCR specification is associated with a
function. This function is defined by either a condition or an event table, describing how the
variable’s value is updated when a monitored variable changes. For each SCR table function,
the C code contains a corresponding update function in which the successful branches assign

Program Generation using APTS 101

the newly calculated value to the primed version of the variable. Each branch of the SCR
case statement in a condition table becomes a C if statement conditioned on the value
of the primed version of the mode class variable. Each SCR if statement is transformed
into a C if-else statement. Below is the C update function corresponding to the condition
table for cSafety_Injection. Note that no code is generated for the false branch (line
57) in the table for cSafety_Injection.2 The tables for mcPressure and tOverridden are
transformed into C code in a similar way.
void update_cSafety_Injection () {

if ((prime_mcPressure == type_mcPressure_TooLow)) {
if (prime_tOverridden) {

prime_cSafety_Injection = ySwitch_Off ;
fprintf (outfile , " cSafety_Injection = ") ;

put_ySwitch (prime_cSafety_Injection) ; }
else if (NOT prime_tOverridden) {

prime_cSafety_Injection = ySwitch_On ;
fprintf (outfile , " cSafety_Injection = ") ;

put_ySwitch (prime_cSafety_Injection) ; }
} ;
if ((prime_mcPressure == type_mcPressure_Permitted)

OR (prime_mcPressure == type_mcPressure_High)) {
if (true) {

prime_cSafety_Injection = ySwitch_Off ;
fprintf (outfile , " cSafety_Injection = ") ;

put_ySwitch (prime_cSafety_Injection) ; }
} ;

}

Execution Code
In addition to generating code from the specification, we also generate code which executes
the specified state machine. The generated code simulates input and output using text files.
Input is from a file which lists monitored events, each specified by the name of a monitored
variable and a value to be assigned to that variable. The execution model is similar to the
execution model of SCR systems used in the translation of SCR into Promela (the language
of the SPIN model checker) by Bharadwaj and Heitmeyer [4] and can be described (in
pseudocode) as follows.
<open files>
state = 0;
<initialize new state variables>;
<check assumptions and assertions>;
while (<infile contains another monitored event>) {

state = state+1;
<copy new state variables to old state variables>;
<update new state variable corresponding to monitored

event>;
<update new state dependent variables in dependency

order>;
<check assumptions and assertions>;

}
<close files>

Separate functions are generated for performing the initialization, copying the variables,
and updating the dependent variables. Note that the dependent variables are updated in an
order consistent with the partial order describing the new state dependencies as discussed in
Section 2.2. The previously generated check_assumptions and check_assertions functions
2 The entry false -> On in the function defining cSafety_Injection is an artifact of the tabu-

lar format. It means that cSafety_Injection is never equal to On when the mode is High or
Permitted and would therefore correspond to dead code.

102 Elizabeth I. Leonard and Constance L. Heitmeyer

are also called by this main routine. All SCR specifications generate a similar main routine;
the only differences are in the names of the update functions for the dependent variables
and the updating of the monitored variables in response to monitored events.

3 Generating C Code from SCR Specifications

This section describes our implementation of the two strategies for code generation. Both
strategies use many of the same relations in their generation of code. Section 3.1 describes
these relations. Sections 3.2 and 3.3 describe the strategies, the first using rewrite rules and
the second using accumulating relations.

3.1 Relations Common to Both Strategies

To generate C code from an SCR specification, each code generator makes extensive use
of the APTS relational database. Relations are defined to compute and store information
needed to generate code. In the implementations, some relations have rules that are condi-
tioned on other relations not holding for a node. Thus, relations that appear negated in the
conditions of rules need to be fully calculated before the rules that contain those negations
can be applied. To accomplish this, the relations are organized into groups called transcripts
that can be calculated in the same pass. The transcripts are executed in an order that re-
spects the dependencies of relations in one group on relations in another group. Both code
generation strategies require similar information to be stored, i.e., the variable dependen-
cies, information about the types of expressions, and several pieces of code that need to be
calculated and stored in the nodes before the C code is generated.

Both strategies need information about variable dependencies. The order in which the
dependent variables are updated depends on the new state dependencies. This dependency
information is calculated by the SCR toolset and then converted into an APTS relation
depend.3 In the SIS example, the rules for depend are as follows:

true -> depend(mcPressure, mWaterPres);
true -> depend(tOverridden, mBlock);
true -> depend(tOverridden, mReset);
true -> depend(tOverridden, mcPressure);
true -> depend(cSafety_Injection, mcPressure);
true -> depend(cSafety_Injection, tOverridden);

These rules can be read as mcPressure depends on mWaterPres,
tOverridden depends on mBlock, and so on. This relation is passed to a SETL2 routine that
constructs a topological sort of the variables with respect to the dependency constraints. The
results of this SETL2 routine are stored in a relation followedby that holds the ordering
of the variables.

Several relations are used to check that the input specification is a valid SCR specifica-
tion. These relations are necessary because in the parsing grammar, expressions, events, and
predicates are condensed into one category. The relations mark the nodes containing each of
these separate types of expression. For example, @T(mBlock = on) is a member of the even-
texpr relation, as is @T(mBlock =on) WHEN (mReset=Off AND NOT (McPressure=High)).
An additional relation marks the nodes containing primes. This primeexpr relation in-
cludes mWaterPres′, mWaterPres′ - mWaterPres, and mWaterPres′ - mWaterPres <= 10.
Using the information in these relations, checks are done to determine whether expressions
including primes, events, and predicates are used only as allowed in the SCR language.

Other relations store information needed to generate the code. For example, each variable
in the generated code has a corresponding primed variable. In the relational database, a

3 The conversion is currently done by hand but would be easy to automate.

Program Generation using APTS 103

relation primename, associated with a variable in the specification, holds the name to be
used for the primed version of the variable.
match(%declist, .x,.y%)| true

-> primename(.x,concat(’prime_’,str(.x)));

match(%declist, .x %) | isavar(rchild(.x))
-> primename(rchild(.x),concat(’prime_’,str(rchild(.x))));

Most APTS relational database rules first match a specific construct in the parse tree, in this
case, a list of variables that is part of a declaration. (Recall that, in APTS, pattern matching
variables have names beginning with a dot.) In the first rule above for primename, if the
list has the form of an identifier .x followed by a comma and list of identifiers .y, then we
convert the node .x to a string and prepend the string “prime_” to it and associate the
resulting string with the tree at .x. (primename is a relation between trees and strings,
meaning that the string is associated with every instance of the identifier .x in the tree, not
just the instance of .x in the node matched by the rule.) The elements in the list .y are
assigned their prime names by repeated applications of the rules. The first rule handles all
multiple element lists but not single element lists. In the second rule, the match condition
states that .x must be a declist. This match condition will match any declist with any number
of elements. In the second rule, we only wish to match declists with a single element. The
condition that the rightmost child of .x be a variable ensures that the second rule is only
triggered by a single element list. (If the list has multiple elements, the right child of .x will
be a declist, not a variable.) The actual identifier is the child of node .x and this is what is
associated with the new string. Note that when matching more complex patterns, as in the
first rule, APTS is able to associate the pattern matching variables with the children of the
matched node (e.g., .x is the leftmost child), but when the pattern consists of just a single
pattern matching variable, as in the second rule, the pattern matching variable is associated
with the matched node rather than with one of its children, even in the case when there is
only one child. This makes it necessary to use rchild(.x) to refer to the child in the second
rule.

For enumerated type variables, relations hold the names of the relevant input and output
routines, as described in Section 2.3. Another relation marks the nodes containing obviously
dead code, e.g., branches labeled by false, never, @T(true), or @T(false). In the SIS
example, the branch [] false -> On on line 57 is marked as dead code by the rule below.
No code is generated for such branches. In the rule, loc() refers to the node matched by
the pattern matching portion of the rule.

match(%if_stmt_body, [] false -> .y%) |true
-> deadcode(loc());

Relations are also used to hold some pieces of the C code. This is done when the code needs
to be calculated at one point in the parse tree and generated somewhere else in the tree.
The code for these functions is generated during one of the earlier phases of the relational
database creation and then passed to the transformation engine or used in the calculation
of the code accumulating relation. For example, the code for the C functions that execute
the specification must be placed at the end of the generated code. These functions must
contain code for each variable in the specification, and thus the code must be calculated
in the variable declarations portion of the parse tree because that is where the variables
are actually listed. As another example, each value in the list of values for an enumerated
type requires code for reading and writing that value (because of the previously described
conversion between the names used in the specification and the names used in the code). For
example, the inputcode relation will contain a pair composed of the variable value, On, and
the code, if(strcmp(compname = “On”) ==0) return(ySwitch_on); else{printf(“not
a valid input value\n”); return(-1);}. This code is stored in relations because both

104 Elizabeth I. Leonard and Constance L. Heitmeyer

the input and output routines must be generated at the node in the parse tree where the
entire type definition occurs, not where the value itself occurs.

3.2 Code Generation Using Rewrite Rules

The generation of C code from an SCR specification using APTS rewrite rules is performed
in three steps. First, a grammar is created that combines the language of the specification
and the form of the corresponding C code. Second, relations are defined that capture the
information in the specification. Finally, a set of transformations is defined that replaces the
SCR specification with the corresponding C code.

The transformation-based code generator uses a grammar that combines both the form
of an acceptable SCR specification and the form of the C code corresponding to the spec-
ification. A combined grammar is used so that during transformation, when the tree is a
combination of SCR and C code, it is still a valid program. (This is a design decision that
we made. During transformation APTS does not check that the parse tree remains valid, so
the combined grammar is not strictly required by APTS.) The grammar used gives a parse
tree where the nodes alternate between general structure and language-specific structure.
For example, consider the following general structure rule from the grammar:
case_ev = scr_case_ev | c_case_ev;
and its corresponding language-specific rules:
scr_case_ev = ’case’ id case_branch_evs ’esac’; c_case_ev =
case_branch_evs ;

A node denoting a case statement in an event table, case_ev, has only one child which
is either a node denoting an SCR event table case statement, scr_case_ev, or a node
denoting the C code corresponding to the event table case statement, c_case_ev. The SCR
event table case statement is delimited by the keywords ’case’ and ’esac’ and includes the
name of the identifier whose value the branches are conditioned on. It is also defined in
terms of the general structure node case_branch_evs, which denotes the branches of the
case statement. The C language-specific node is also defined in terms of case_branch_evs,
which, in turn, is defined in terms of language-specific nodes denoting the branches. When
the parse tree is initially created from an SCR specification, it contains general structure
nodes alternating with SCR structure nodes. During the transformation process, SCR nodes
are replaced by C nodes, so that at all times during the transformation, we have a valid
parse tree.

Once an input SCR specification is parsed using this grammar, the relational database
inference engine is called. In addition to the relations described in the preceding section, this
code generator needs a new relation checking that the input is a valid SCR specification.
This is necessary because the layered nature of the grammar allows an input file containing
a mix of SCR and C code to be accepted by APTS as being syntactically valid. We check
that only SCR nodes are used in alternation with the general structure nodes.

After the input specification has been parsed and all necessary relations have been cal-
culated, the SCR specification is transformed into C code. The translation is done in several
stages and the order of these stages matters because the transformations change the parse
tree and thus may cause matches for later transformations to fail.

The first stage of transformation eliminates some of the dead code in the specification.
The dead code on line 57 of the SIS example would be removed by the rewrite rule if2
below. The match condition matches lists of if-statements where the first member .y is an
if-statement and the second member .x is a list of if-statements. Recall that the node corre-
sponding to line 57 has already been added to the deadcode relation during the building
of the relational database, so the condition deadcode(.y) will be true. The complete list is
replaced in the parse tree by the second component, eliminating the dead code branch.

if2: match(%scr_if_stmt_bodies, .y .x%) | deadcode(.y)->
rewrite(%scr_if_stmt_bodies, .x%);

Program Generation using APTS 105

The second step replaces enumerated values appearing in constant definitions and variable
declarations with their new, type-specific names. For example, the rule below replaces TooLow
on line 17 of the SIS example with type_mcPressure_TooLow. The relation newname
contains the type-specific name associated with the identifier.
enum3: match(%var_decl, .x : .t, initially .y;%) |

newname(.y,.z) ->
rewrite(%var_decl, .x : .t, initially .z;%);

The third stage of the transformation converts most of the SCR language into C code.
For example, the rule below replaces the type definition on line 5 of SIS example with the
corresponding C code given in Section 2.3. The relation rangefun contains the name to use
for the range checking function in the variable .s.
typebody2: match(%scr_type_body, .x : integer in

[.y,.z];%) | rangefun(.x,.s) -> rewrite(%c_type_body,
define .x int void .s (char * name, int value) {if
((value < .y) OR (value > .z)) {printf("value out of
range:"); printf(strformout, name);}}%);

After this step is complete, the enumerated values remaining in expressions are replaced
with their type-specific counterparts. Following this, the event operators are replaced with
equivalent logical expressions. Finally, each primed expression is replaced with the name of
the corresponding primed variable if the expression is a variable. If the primed expression is
an enumerated value or an integer, then the prime is eliminated. The following are some of
the rewrite rules used to perform these transformations.

equal: match(%expr, .x = .y%) |true ->
rewrite(%expr, .x == .y%);

event1: match(%expr, @T(.x)%) |true ->
rewrite(%expr, ((.x)’) AND NOT(.x) %);

prime2: match(%expr, (.x)’%) | primename(.x,.y) ->
rewrite(%expr, .y%);

prime11: match(%expr, (.x == .y)’%) | true ->
rewrite(%expr, (.x)’ == (.y)’%);

prime18: match(%expr, (.x)’%) | enumval(.x) or isint(.x)
or const(.x) -> rewrite(%expr, .x%);

Each rule above replaces an SCR expression with an equivalent C expression. For exam-
ple, for the SCR event expression @T(x=5), the C code is generated as follows. First, the
node containing this expression is rewritten as @T(x==5) using the equal rule. Then, us-
ing event1, the expression is transformed into ((x==5)′) AND NOT(x==5). Next, prime11
and prime18 are used to place the prime in the correct location, rewriting the expression
first as ((x)′==(5)′) AND NOT(x==5) and then as ((x)′==5) AND NOT(x==5). Finally, using
prime2, the expression is rewritten as (prime_x==5) AND NOT(x==5).

3.3 Code Generation Using an Accumulating Relation
An alternative form of code generation relies solely on relations. Instead of transforming the
source code into the target language, the target language code is accumulated in a relation.
This approach keeps the two languages separate and preserves the original parse tree. On
the negative side, it requires a great deal of additional calculation of relations. The relations
used in this method are all but one of those used in the transformation-based method as
well as several additional relations to hold the generated code and a relation to calculate
the primed version of any expression.

Because the purely relational framework keeps the grammars for SCR and C separate,
the parse tree contains only the productions for SCR language constructs. There is no need
for the alternating style used in the parse tree for transformation-based code generation.
Additionally, there is no need for the relation that checks that the input specification is

106 Elizabeth I. Leonard and Constance L. Heitmeyer

pure SCR (rather than a mix of SCR and C). Because the grammars for SCR and C are
separated, the input is only accepted by the parser if it is a valid specification in the SCR
grammar. Although it is no longer combined with the SCR grammar, the C grammar is still
included in the APTS grammar specification because it is used to structure the C code kept
in the accumulating relation.

In this framework, additional relations perform the work done by the transformations
in the other approach. A relation prime is used to calculate the primed C version of each
expression so that if the primed form is needed during code generation, it will be available.
The following are some of the rules for calculating prime. The first rule states that the
prime of an identifier is the corresponding primed identifier, stored in relation primename.
The second states that the prime of an integer or a constant is just that integer or constant.
Finally, the third rule states that the prime of an equality expression involving two values
is an equality expression of the primes of those two values. Note that in this inference rule
the “=” used by SCR is replaced by the “==” used by C.

match(%expr, .x%) | primename(.x,.y) ->
prime(loc(),%expr,.y%);

match(%expr, .x%) | isint(.x) or const(.x) ->
prime(loc(),%expr,.x%);

match(%expr, .x = .y%) | prime(.x,.primex) and
prime(.y,.primey)
-> prime(loc(),%expr,.primex == .primey%);

All generated code is also held in relations. The execution code is developed in relations as
previously described. The code generated by rewrite rules in the transformational approach
is, in this approach, also placed in a relation. For each node, the accumulating relation stores
the C code corresponding to the portion of the SCR specification represented by the subtree
rooted at that node. This code is determined by the structure of the tree at that node and
the code associated with the node’s children. The code for the entire program is associated
with the root of the tree.

The relational database rules listed below perform the same functions as the rewrite
rules if2, enum3, and typebody2 described in Section 3.2. The first rule eliminates the same
dead code as rewrite rule if2 by keeping as the code for the matched node only the code
associated with the pattern variable .x. The second rule uses the type-specific name of an
enumerated value as the C code to be generated for all expressions equivalent to that value,
including the variable declarations handled in the transformation-based code generator by
the rewrite rule enum3. The third relational database rule handles the same situation as
rewrite rule typebody2, associating an SCR range type definition with the corresponding C
code in relation c_code.
match(%if_stmt_bodies, .y .x%) | deadcode(.y) and

c_code(.x,.codex)and not(deadcode(loc()))->
c_code(loc(),%c_if_stmt_bodies, .codex%);

match(%expr, .x%) | enumval(.x) and newname(.x,.y) ->
c_code(loc(),%expr,.y%) ;

match(%type_body, .x : integer in [.y,.z];%) |
rangefun(.x,.s)-> c_code(loc(),%c_type_body,
define .x int void .s (char * name, int value)
{if ((value < .y) OR (value > .z)) {printf("value
out of range:");printf(strformout, name);}}%);

Below are several rules for generating C code for event expressions and other simpler expres-
sions. The first two rules state that variables and integers in the SCR specification are not
changed in the C code. The third rule calculates the C code for an expression that checks the

Program Generation using APTS 107

equivalence of two expressions by combining the previously calculated code for each of the
subexpressions. The last rule calculates the C code for the “at true” event, converting it into
an equivalent logical expression. Note that this rule assumes that the code corresponding to
the prime value of the expression has already been calculated and is stored in .primex.

match(%expr, .x%) | not(enumval(.x)) and isavar(.x)
-> c_code(loc(),%expr,.x%);

match(%expr, .x%) | isint(.x) -> c_code(loc(),%expr,.x%);

match(%expr, .x = .y%) | c_code(.x,.codex) and
c_code(.y,.codey) ->
c_code(loc(),%expr, .codex == .codey%) ;

match(%expr, @T(.x)%) |prime(.x,.primex) and
c_code(.x,.codex) ->
c_code(loc(),%expr, (.primex) AND NOT(.codex) %) ;

Consider again the example @T(x=5). Using the relational database rules above and those
given earlier for the relation prime, we can calculate the relations c_code and prime
for each of the subcomponents. For example, using these rules, prime(5) = 5, prime(x)
= prime_x, c_code(5) = 5, and c_code(x) = x. Using these as a basis, we determine the
values of the relation for x=5, namely, prime(x=5) = prime_x ==5 and c_code(x=5) =
x==5. Now, we can calculate the value of c_code for the full expression: c_code(@T(x=5))
= (prime_x==5) AND NOT (x==5).

4 Discussion

Given an SCR specification, the transformation-based and relation-based strategies gen-
erate exactly the same code. For the SIS example, which generated 293 lines of C code,
the transformation-based strategy required four minutes and the relation-based strategy
required 20 minutes.4 We also used both generators to generate code from the SCR re-
quirements specification for a cryptographic device [29]. This latter specification contains
36 variables and 20 function definitions and is 658 lines long. The translation of the SCR
tabular specification into the SCR grammar used by APTS was done by hand, although
such a translation could be automated. In the second example, the code generator using
rewrite rules required approximately 12 hours to generate 2028 lines of C code. The gen-
erator that accumulated code in a relation required far longer—more than 72 hours. We
observed that the version using rewrite rules spent most of the time building the relational
database. Clearly, a speedup of the APTS relational database inference engine would greatly
improve the execution times for both code generators.

For our purposes, APTS was a useful tool for exploring different code generation strate-
gies since it supports both the relational and the transformation-based approaches. However,
the prohibitively lengthy times that APTS requires to generate code makes the use of APTS
in a production-quality system impractical. Paige planned a number of improvements to
APTS [38], which were expected to increase the translation rate by a factor of 6000. These
improvements included translating the SETL2 code of APTS into C (for an expected speedup
factor of 30) and using partial evaluation to convert the APTS interpreters into compilers
(for an expected speedup factor of 10). If these two improvements were made, the times for
generating code for SIS would be in seconds instead of minutes and for the cryptographic
device would be in minutes instead of hours.

4 Execution times are for a Sun Ultra 450 with 2 UltraSPARC-II 296 MHz CPUs and 2 GB memory,
running Solaris 5.6.

108 Elizabeth I. Leonard and Constance L. Heitmeyer

While the transformation-based approach generates code more quickly in APTS, the
relation-based strategy is more straightforward. Though many of the rewrite rules are easily
understood because they relate directly to the inference rules used by the relation-based
strategy, the necessary execution ordering of the rewrite rules is less intuitive. Note too
that a purely transformational strategy was impossible because code sometimes needed to
be calculated at one point in the parse tree and generated at a different point in the tree.
In the generator using rewrite rules, this was done by placing the code in a relation in the
relational database and passing it to the transformational engine.

Changing the target language from C to some other language (or modifying the C code
to be generated) would require approximately the same amount of work for both generators.
Most relations used by both strategies refer only to the SCR specification and thus would
not change. For both code generators, the grammar used by APTS would require modifica-
tion. With the transformation-based strategy, the C language structures in the interleaved
grammar would be replaced by the language structures of the new target language. With
the relation-based strategy (or if the translation-based strategy did not use an interleaved
grammar), changing the grammar is even easier. Since the new language need not be inter-
leaved with the SCR grammar, it can simply be added to the grammar file in place of the
C grammar. Finally, the transformations or the accumulating relation must be modified. In
both cases, the actual conditions for the rules (rewrite or inference) remain the same. What
changes is the result of the rewrite rule or the value stored in the accumulating relation.

It should also be noted that code can be generated for incomplete specifications. In
particular, code can be generated for partial specifications in which all of the dependent
variables have not yet been defined by a table function. Because the code generated for each
function definition is independent of the code generated for any other function definition, it
is possible to generate code separately for each function in the specification. However, the
variable declarations, type definitions, and constant definitions for any variables, types, and
constants used in the table need to be included in the partial specification in order for code
to be properly generated for the table.

The generated C code performs very well. The code for the communications device
processed an input file with 17 monitored events in less than one second. We have no
handwritten C code to which the generated code can be compared, but the SCR toolset
has a simulator [20] that produces Java code to simulate the behavior of the state machine
defined by the specification. Our C code runs faster than the simulator’s Java code, but a
fair comparison of the two is difficult. Java code is generally slower than C code and the
simulator also uses a GUI interface, slowing the running time even more. The simulator has
one advantage over our C code; it has been optimized to update a variable only when at
least one of the variables on which it depends has been changed.

A major contribution of Paige’s research is finite differencing. Although the APTS refer-
ence manual [37] states that APTS contains techniques for optimizing the generated code,
how to use these techniques within APTS is not documented. However, some preliminary
work on how code generated from SCR specifications could be optimized has been done.
One serious source of inefficiency in the generated code is that each new input requires an
update to every variable in the program. One obvious way to reduce this inefficiency, which is
used by the SCR simulator, is to use the variable dependencies (computed automatically by
the SCR toolset) to determine which variables could potentially change value when a given
input variable changes value and eliminate updates to the remaining variables. Information
from invariants may also be used to further optimize the variable updates [27].

Other ways to reduce inefficiency are to identify parts of the specification that lead to
dead code and to redundant code and omit code generation for those parts. Our implementa-
tions currently only eliminate only the obviously dead code – branches labeled by false and
never. State invariants constructed using the algorithms described in [24,28] can be used to
identify parts of the specification that lead to dead code or to redundant code [26]. For ex-

Program Generation using APTS 109

ample, [24] shows that tOverridden = true→ mcPressure �= High is a state invariant of the
SIS specification. This invariant implies that tOverridden cannot change from true to false
if mcPressure = High in the old state. Hence, the disjunct on line 46 of the SIS specification
@T(NOT(mcPressure = High)) can be ignored because it produces dead code. Similarly, in
the specification of an automobile cruise control system, one of the automatically generated
state invariants is M = Inactive→ IgnOn [24]. Hence, the event @T(Lever=const) WHEN
(M = Inactive AND EngRunning AND NOT Brake AND IgnOn) may be replaced by the
equivalent event @T(Lever=const) WHEN (M = Inactive AND EngRunning AND NOT
Brake).

Recent Work

Since the publication of our original research on this problem in 2003 [18], we have continued
to investigate the problem of generating code from SCR specifications. In 2004, we published
preliminary results on using invariants to optimize specifications before code generation [25].
Such optimizations eliminate parts of the original specification that either lead to dead code
or unneeded code and, as a result, reduce the amount of code that is generated from the
specification and consequently increase the efficiency of the code. These optimizations are
applied to a specification prior to running one of the APTS-based translators described in
this paper.

More recently, an optimized code generator for SCR specifications has been designed
and implemented [43]. This new code generator did not build directly upon either of our
APTS-based translators because we were interested in generating code quickly and in per-
forming optimizations. Instead, the new code generator, written in Python, constructs an
abstract syntax tree (AST) from the SCR specification, performs optimizations on the AST,
and then generates code from the optimized AST. The code generator applies three types of
optimization to the AST, namely, input slicing, simplification, and output slicing. The first
optimization technique, input slicing, uses the update dependencies of variables to eliminate
updates to variables that cannot change for a given input. The second technique, simplifi-
cation, use substitutions to reduce the complexity of expressions and to remove nodes from
the AST when those nodes cannot execute. Simplification derives substitutions from several
sources, for example, from invariants, such as the assumptions and assertions of the speci-
fication, or from invariants automatically generated using the method described in [24, 28].
It also derives substitutions based on the known value of variables on paths in the AST and
conditions that are known to be true along paths in the AST. The third technique, output
slicing, uses dataflow analysis to determine which variables are live at each node of the AST.
Any node which computes a value for a variable which is not live in the poststate of that
node can be eliminated. This new code generator is considerably faster than our APTS-
based code generators; for example, in a few seconds, it was able to generate unoptimized
code from a specification containing 1114 tables.

5 Related Work

Generating code from specifications is not a new idea. The APTS translators for SETL2
and SQ2+ [6] can be used to translate specifications in these high-level languages into C.
Like APTS, META-AMPHION [32], REFINE [41], and KIDS [44] can be used to design
translators from high-level declarative specifications into executable programs. Moreover,
several commercial tools generate code from specifications. For example, Statemate [15]
generates C or Ada code from Statechart specifications, Telelogic’s SCADE generates C or
Ada code from LUSTRE [13], and the Stateflow Coder generates C code from Stateflow
specifications. Also, C++ code generation for specifications written in RSML is discussed
in [16,48], C++ code generated from Charon specifications is described in [2], and generation
of Java code from Input/Output Automata is discussed in [46]. In [47], C-like imperative

110 Elizabeth I. Leonard and Constance L. Heitmeyer

code is generated from specifications given in E-FRP (Event-Driven Functional Reactive
Programming) and transformations are applied to optimize the code. As in SCR, E-FRP
variables only change value in response to events. Interest has been expressed in translating
E-FRP into SCR [47].

Our two strategies share similarities with previous code generation methods. Both store
additional information in relations. Many (but not all) of these relations are defined over
nodes in the parse tree, making those relations similar to the attributes used in attribute
grammar systems [30], such as the Synthesizer Generator [42]. Like an attribute grammar,
our relational approach treats the target code as a synthesized attribute of the parse tree
for the specification.

Our use of APTS rewrite rules to generate code is similar to Cai and Paige’s [6] use of
APTS to translate SETL2 and SQ2+ into C. Their translations used rewrite rules to generate
the code, just as our implementation did. One difference between our work and theirs is
that they also made use of APTS built-in finite differencing and dominated convergence
optimizations, while we did not.

Our transformational strategy is also similar to the HATS transformational programming
system [49] in its use of tree rewriting rules. Both HATS and our transformational strategy
use rewrite rules that modify the actual tree to hold the changed code, and both require that
the transformations always produce valid trees. Both also condition the rewrite rules on the
matching of patterns in the trees. One difference is that our APTS-based transformational
strategy also allows the relations to hold additional information and to be used as conditions
for matching in rewrite rules. Another difference between HATS and our approach is that
HATS may sometimes use problem-specific transformations, which our transformational
system does not currently support.

Two other systems, Twig [1] and iburg [11], produce code generators that modify the
parse tree. Unlike APTS, which makes many passes over the parse tree, these code generator
generators work by making only two passes over the parse tree. The first pass finds a set of
minimal cost patterns that cover the tree. The second pass executes the semantic actions
associated with these patterns. Twig and iburg do not replace the code in the tree with
target language code as our transformational system does. Instead, a pattern is matched,
code associated with the pattern is generated to a file, and then the tree is reduced using the
rewrite rule for the pattern. This process is repeated until the whole tree has been reduced.

As noted in Section 2.3, the code generated by our code generators uses an execution
model similar to the execution model of SCR systems used in the translation of SCR into
Promela [4]. Both use two sets of variables, one for the old state values and one for the
new state values. Both encode the function tables as conditional statements in the target
language and both execute the code for the functions in an order determined by the de-
pendency relationship on the variables. One difference is that the Promela translation uses
nondeterministic choice to implement the branches in a table, which is impossible in C. This
is not a significant difference (i.e., it does not result in a possibly different semantics), since
the conditions on the branches of a table are required to be disjoint [21], a requirement that
is verified by the consistency checker in the SCR toolset.

6 Conclusion and Future Work

This paper described our experiments in developing code generators using APTS. Two dif-
ferent strategies to generate C code from SCR requirements were implemented. One strategy
transforms a parse tree in the specification language into a parse tree in the target language,
while the other accumulates the generated code in a relation associated with nodes in the
specification language parse tree. Both APTS implementations generate the exact same code
and perform significant analysis before generating code. Though APTS is currently too slow
for use in a production-quality system, implementing the improvements that Paige suggested

Program Generation using APTS 111

should produce a system that uses a relational database and rewrite rules to generate code
at an acceptable speed.

The results of these case studies inspired our recent work on generating optimized code
from SCR specifications [43]. In the future, we plan to explore further techniques for opti-
mizing code generated from SCR specifications, such as finite differencing. We also plan to
investigate techniques, such as [40], for generating provably correct code from SCR specifi-
cations.

Acknowledgments

We are very grateful for Bob Paige’s work on the APTS system and the assistance he provided
us in using APTS. Bob provided us with a first version of the SCR grammar for APTS and
also answered many of our questions about APTS. Much of the initial work on the SCR
abstract grammar was done by Ramesh Bharadwaj. Discussions with Myla Archer were very
useful in our development of the grammar. The algorithms for constructing invariants from
SCR specifications and the idea of using invariants to identify parts of the specification that
would lead to redundant or dead code are due to Ralph Jeffords. We thank our colleagues
Myla Archer and Ralph Jeffords for useful comments on drafts of this book chapter and
Annie Liu and Scott Stoller for helpful discussions. We also acknowledge the contributions
of Tom Rothamel who implemented the optimized code generator described in Section 4.

References

1. A. V. Aho, M. Ganapathi, and S. W. K. Tjiang: Code generation using tree matching and
dynamic programming. ACM Transactions on Programming Languages and Systems,
11(4):491–516, Oct. 1989.

2. R. Alur, F. Ivančić, J. Kim, I. Lee, and L. Sokolsky: Generating embedded software
from heirarchical hybrid models. SIGPLAN Not., 38:171–182, 2003.

3. M. Archer: TAME: Using PVS strategies for special-purpose theorem proving. Annals
of Mathematics and Artificial Intelligence, 29(1–4), Feb. 2001.

4. R. Bharadwaj and C. Heitmeyer: Model checking complete requirements specifications
using abstraction. Automated Software Engineering, 6(1), Jan. 1999.

5. J. Cai and R. Paige: Program derivation by fixed point computation. Science of Com-
puter Programming, 11:3, 197–261, 1989.

6. J. Cai and R. Paige: Towards increased productivity of algorithm implementation.
Proceedings ACM SIGSOFT 1993, Software Engineering Notes, 18(5):71–78, Dec. 1993.

7. P.-J. Courtois and D. L. Parnas: Documentation for safety critical software. In Proc.
15th Int’l Conf. on Softw. Eng. (ICSE ’93), 315–323, Baltimore, MD, 1993.

8. J. B. Dabney and T. L. Harman: Mastering Simulink. Prentice-Hall, 2004.
9. S. Easterbrook, R. Lutz, R. Covington, Y. Ampo, and D. Hamilton: Experiences using

lightweight formal methods for requirements modeling. IEEE Transactions on Software
Engineering, 24(1), Jan. 1998.

10. S. R. Faulk, L. Finneran, J. Kirby, Jr., S. Shah, and J. Sutton: Experience applying
the CoRE method to the Lockheed C-130J. In Proc. 9th Annual Conf. on Computer
Assurance (COMPASS ’94), Gaithersburg, MD, June 1994.

11. C. W. Fraser, D. R. Hanson, and T. A. Proebsting: Engineering a simple, efficient code
generator generator. ACM Letters on Programming Languages and Systems, 1(3):213–
226, Sept. 1992.

12. N. Halbwachs, F. Lagnier, and C. Ratel: Programming and verifying real-time systems
by means of the synchronous data-flow language LUSTRE. IEEE Trans. Softw. Eng.,
18(9):785–793, Sept. 1992.

112 Elizabeth I. Leonard and Constance L. Heitmeyer

13. N. Halbwachs, P. Raymond, and C. Ratel: Generating efficient code from data-flow
programs. In Third Intern. Symposium on Programming Language Implementation and
Logic Programming, Passau (Germany), Aug. 1991.

14. D. Harel: Statecharts: A visual formulation for complex systems. Sci. Comput. Program.,
8(3):231–274, 1987.

15. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,
and M. B. Trakhtenbrot: Statemate: A working environment for the development of
complex reactive systems. IEEE Trans. Softw. Eng., SE-16(4), Apr. 1990.

16. M. P. E. Heimdahl and D. J. Keenan: Generating code from hierarchical state-based
requirements. In Proc. IEEE International Symposium on Requirements Engineering,
Jan. 1997.

17. C. Heitmeyer: Software cost reduction. In J. J. Marciniak, editor, Encyclopedia of
Software Engineering. John Wiley & Sons, Inc., New York, NY, second edition, 2002.

18. C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords: Tools for constructing require-
ments specifications: The SCR toolset at the age of ten. Computer Systems Science and
Engineering, 20(1):19–35, Jan. 2005.

19. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj: Using abstraction and
model checking to detect safety violations in requirements specifications. IEEE Trans.
on Softw. Eng., 24(11), Nov. 1998.

20. C. Heitmeyer, J. Kirby, Jr., B. Labaw, and R. Bharadwaj: SCR*: A toolset for specifying
and analyzing software requirements. In Proc. Computer-Aided Verification, 10th Annual
Conf. (CAV ’98), Vancouver, Canada, 1998.

21. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw: Automated consistency checking of
requirements specifications. ACM Transactions on Software Engineering and Methodol-
ogy, 5(3):231–261, Apr.–June 1996.

22. K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallander: Software requirements for
the A-7E aircraft. Technical Report 3876, NRL, Washington, DC, 1978.

23. S. D. Hester, D. L. Parnas, and D. F. Utter: Using documentation as a software design
medium. Bell System Tech. J., 60(8):1941–1977, Oct. 1981.

24. R. Jeffords and C. Heitmeyer: Automatic generation of state invariants from require-
ments specifications. In Proc. Sixth ACM SIGSOFT Symp. on Foundations of Software
Engineering, Nov. 1998.

25. R. Jeffords and E. I. Leonard: Using invariants to optimize formal specifications before
code synthesis. In Proc. 2nd ACM/IEEE Conference on Formal Methods and Models
for Co-Design (MEMOCODE ’04), San Diego, CA, June 2004.

26. R. D. Jeffords: Personal communication. Oct. 2001.
27. R. D. Jeffords: Personal communication. Jan. 2002.
28. R. D. Jeffords and C. L. Heitmeyer: An algorithm for strengthening state invariants

generated from requirements specifications. In Proc. of the Fifth IEEE International
Symposium on Requirements Engineering, Aug. 2001.

29. J. Kirby, Jr., M. Archer, and C. Heitmeyer: SCR: A practical approach to building a
high assurance COMSEC system. In Proceedings of the 15th Annual Computer Security
Applications Conference (ACSAC ’99). IEEE Computer Society Press, Dec. 1999.

30. D. E. Knuth: Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

31. E. I. Leonard and C. L. Heitmeyer: Program synthesis from formal requirements speci-
fications using APTS. Higher-Order and Symbolic Computation, 16(1-2):63–92, 2003.

32. M. R. Lowry and J. V. V. Baalen: Meta-amphion: Synthesis of efficient domain-specific
program synthesis systems. Automated Software Engineering, 4:199–241, 1997.

33. S. Meyers and S. White: Software requirements methodology and tool study for A6-E
technology transfer. Technical report, Grumman Aerospace Corp., Bethpage, NY, July
1983.

Program Generation using APTS 113

34. S. Miller: Specifying the mode logic of a flight guidance system in CoRE and SCR. In
Proc. 2nd ACM Workshop on Formal Methods in Software Practice (FMSP ’98), 1998.

35. R. Paige: Programming with invariants. IEEE Software, 3(1):56–69, Jan. 1986.
36. R. Paige: Symbolic finite differencing — part 1. In N. Jones, editor, Proc. ESOP 90,

LNCS 432. Springer, 1990.
37. R. Paige: APTS external specification manual (rough draft). Unpublished manuscript,

available at http://www.cs.nyu.edu/jessie/, 1993.
38. R. Paige: Viewing a program transformation system at work. In Proc. Joint 6th Int’l

Conf. on Programming Language Implementation and Logic Programming (PLICLP)
and 4th Int’l Conf. on Algebraic and Logic Programming (ALP). LNCS 844, Springer,
Sept. 1994.

39. D. L. Parnas, G. Asmis, and J. Madey: Assessment of safety-critical software in nuclear
power plants. Nuclear Safety, 32(2), Apr.–June 1991.

40. A. Pnueli, M. Siegel, and E. Singerman: Translation validation. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
1998), LNCS 1384, Springer, 151–166, 1998.

41. Reasoning Systems. Refine User’s Guide Version 3.0, May 1990.
42. T. W. Reps and T. Teitelbaum: The Synthesizer Generator: A System for Constructing

Language-Based Editors. Springer, New York, NY, 1989.
43. T. Rothamel, C. L. Heitmeyer, E. I. Leonard, and Y. A. Liu: Generating optimized code

from SCR specifications. In Proceedings of the 2006 ACM Sigplan/Sigbed Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES ’06), Ottawa, Ontario,
Canada, June 14-16, 2006, 135–144. ACM, 2006.

44. D. R. Smith: Kids: A semiautomatic program development system. IEEE Transactions
on Software Engineering, 16:1024–1043, Sept. 1990.

45. K. Snyder: The setl2 programming language. Technical Report 490, Courant Institute/
New York University, NY, 1990.

46. J. A. Tauber, N. A. Lynch, and M. J. Tsai: Compiling IOA without global synchroniza-
tion. In Proc. of the Third IEEE Int’l Symp. on Network Computing and Applications
(NCA ’04), Washington, DC, 2004, 2004.

47. Z. Wan, W. Taha, and P. Hudak: Event-driven frp. In Proc. Fourth International
Symposium on Practical Aspects of Declarative Languages (PADL 02), Jan. 2002.

48. M. W. Whalen: High-integrity code generation for state-based formalisms. In Proc. of
the 22nd Int’l Conf. on Software Eng. (ICSE ’00), New York, NY, USA, 2000.

49. V. L. Winter, D. Kapur, and R. S. Berg: Refinement-based derivation of train controllers.
In V. L. Winter and S. Bhattacharya, editors, High Integrity Software, chapter 9, 197–
240. Kluwer Academic Publishers, Norwell, MA, 2001.

Universal Regular Path Queries

Oege de Moor1, David Lacey2, and Eric Van Wyk3

1 Computing Laboratory, Oxford University, Oxford, England. oege@comlab.ox.ac.uk
2 Department of Computer Science, University of Warwick, Coventry, England.
david.lacey@dcs.warwick.ac.uk

3 Department of Computer Science and Engineering, University of Minnesota, Minneapolis,
Minnesota, USA. evw@cs.umn.edu

Summary. Given are a directed edge-labelled graph G with a distinguished node n0, and a regu-
lar expression P which may contain variables. We wish to compute all substitutions φ (of symbols
for variables), together with all nodes n such that all paths n0 → n are in φ(P). We derive an
algorithm for this problem using relational algebra, and show how it may be implemented in Pro-
log. The motivation for the problem derives from a declarative framework for specifying compiler
optimisations.

Keywords: relational algebra, program analysis, regular expressions, query languages, program
transformation.

1 Bob Paige and IFIP WG 2.1

Bob Paige was a long-standing member of IFIP Working Group 2.1 on Algorithmic Lan-
guages and Calculi. In recent years, the main aim of this group has been to investigate the
derivation of algorithms from specifications by program transformation. Already in the mid-
eighties, Bob was way ahead of the pack: instead of applying transformational techniques to
well-worn examples, he was applying his theories of program transformation to new prob-
lems, and discovering new algorithms [8, 39, 43]. The secret of his success lay partly in his
insistence on the study of general algorithm design strategies (in particular finite differenc-
ing [38,42] and data structure selection [11]) rather than the study of tiny derivational steps
that some of the working group had focused on.

His success in the systematic discovery of new algorithms was in itself remarkable, but
perhaps even more impressive was the fact that he succeeded in automating his derivations
in the APTS system [12, 40]. This provided the ultimate proof that he had succeeded in
identifying deep principles in algorithm design: an automated derivation leaves no room
for cheating. The mechanism for applying transformations in the APTS system was that of
rewrite rules, and a fast pattern matching algorithm (invented, naturally, by Bob himself [13])
provided the basic engine. The rules could have side conditions expressed as queries on a
“database” of facts about the program under consideration. The facts in the database could
be any result of program analyses.

A major difficulty, which we repeatedly discussed with Bob, was to express the queries
in a declarative metalanguage, and to maintain the database incrementally as the rules are
applied [41]. These remain major problems in the field of automated program transformation,
and the present paper is a small contribution towards solving them. We follow Bob’s example
in our attempt to derive the relevant algorithm itself in a transformational fashion.

Bob’s influence on working group 2.1 has been immense, and he provided much inspi-
ration for its members. He will be much missed. His work, however, lives on in the current
research of the group, and this paper is but a small example of that.

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 114–129.
c© 2008 Springer.

Universal Regular Path Queries 115

1.1 Specifying Compiler Optimisations

Several of the phases of a compiler can be generated from declarative specifications: for
instance, there are commonly used tools for syntax analysis (lex and yacc), for semantic
analysis (attribute grammar systems such as FNC-2 and the SG [25, 47]) and also for in-
struction selection (IBURG [21]). There is however no such widely accepted tool for the
declarative specification of optimising transformations, although there have been many pro-
posals, e.g. [3, 6, 9, 17,20,27,31,52,54,55].

In a traditional compiler, the optimising transformations are typically performed as
rewrites on the flow graph [1, 2, 37]. The difficulty lies in the specification of the neces-
sary side conditions. For example, consider constant propagation. In essence, it is simply the
rewrite rule

x := y ⇒ x := c

where y is a program variable, and c a constant. The rule is applicable only if on all execution
paths to the assignment x := y, the last modification to y was an assignment of the form
y := c. How can one conveniently express this condition?

Let us assume that edges in the flow graph are labelled with atomic propositions about
their target statement. For example, each edge to a node that is of the form y := E (or
otherwise modifies y) would be labelled with the proposition def (y). We can think of a path
in the flow graph as a sequence of edges, or alternatively as a sequence of edge-labelling
propositions. The side condition of constant propagation then becomes the requirement
that all paths from program entry to x := y are in the regular language

P = (_)∗ ; y := c ; (¬def (y))∗ ; x := y

Here (_) denotes a wildcard, (;) is sequential composition and (_)∗ is the usual closure
operation. The symbols y, c and x are pattern variables: we seek to compute substitutions
φ that instantiate these variables, coupled with nodes n such that all paths to n are in
the regular language φ(P). In Figure 1, an example is shown that has two solutions, namely
({y → q, c → 0, x → s}, n1) and ({y → q, c → 0, x→ t}, n2). Note the difference between pat-
tern variables (x, y, c) which appear in the regular expression and program variables (p, q, r)
which appear in the flow graph. Also notice that one of the paths in the solution, from n0

to n2, cannot occur in actual program runs.

Fig. 1. An example flow graph.

As another example consider common subexpression elimination. Here the rewrite is
equally simple, we replace an assignment to a complex expression with an assignment to a
variable

116 Oege de Moor et al.

x := y + z ⇒ x := w

The side condition must say that every path to the assignment x := y + z passes through
the assignment w := y + z and nothing must interfere between these two assignments. The
pattern that all paths from the entry to the x := y + z node must match is

Pcse = (_)∗;w := y + z; (¬def (w) ∧ ¬def (y) ∧ ¬def (z))∗;x := y + z

Furthermore, the variable w should not be equal to y or z. That additional requirement could
have been encoded in the above formula, but we prefer to treat it separately for expository
reasons.

It is now apparent that our initial description of the problem was somewhat over-
simplified, because in general we are interested in many different facts about edges in the
flow graph, not just the atomic propositions such as def (x). We therefore need to consider
edges to be labelled by composite propositions that are true of the target node. Composite
propositions are built from atomic propositions, and the usual logical connectives (¬,∧,∨).
A path in the flow graph thus corresponds to a sequence [p0, p1, . . . , pn−1], where each pi is a
composite proposition. Similarly, the alphabet in the regular expression is that of composite
propositions. We seek to compute all (substitution, node) pairs (φ, n) that satisfy the fol-
lowing condition. For every path to n in the flow graph (say [p0, p1, . . . , pm−1]) there exists
a word [q0, q1, . . . , qm−1] in the language of the pattern φ(P) such that pi ⇒ qi for each
0 ≤ i < m.

To illustrate, the program in Figure 2 is annotated with composite propositions about
the use and definition of different program variables. Consider the pattern Pcse that we
introduced above. One solution is (φ, n5), where φ = {x → t, w → p, y → 5, z → q}. For
example, one of the paths from the entry to n5 is through n1,n2 and n4. This path is labelled
by the propositions
[p := 5 ∗ q ∧ def (p) ∧ use(q), r>4 ∧ use(r), t := 3 ∧ def (t), t := 5 ∗ q ∧ def (t) ∧ use(q)]

Fig. 2. A program annotated with composite propositions.

Each element of this path implies an associated element in a path in φ(Pcse), namely:

[p := 5 ∗ q, ¬def (p) ∧ ¬def (5) ∧ ¬def (q), ¬def (p) ∧ ¬def (5) ∧ ¬def (q), t := 5 ∗ q]

In this paper, we shall initially ignore the propositional structure of the alphabet, and solve
a (seemingly) simpler problem first, as a stepping stone towards the above application. We
aim to develop an algorithm for solving universal regular path queries of the following form.
Given a regular expression P that contains a number of variables, an edge-labelled directed
graph G and a distinguished node n0 of G, it is required to compute all (substitution, node)
pairs (φ, n) so that all paths n0 → n are in the regular language φ(P). Naturally we are
only interested in those pairs where n is actually reachable, so that there exists at least one
path n0 → n in φ(P).

Universal Regular Path Queries 117

The structure of this paper is as follows. First we derive an algorithm for the case that P
does not contain variables. Our purpose in presenting this derivation is to promote the use
of universal algebra in reasoning about problems in automata theory; using a number of
well-understood concepts from universal algebra, the derivation is a calculation of merely
six steps. Next, we encode that algorithm as a Prolog program.

This paper is an exploratory step towards a tool for programming optimising transforma-
tions in a declarative style, and we conclude with a discussion of the further work required.
We also briefly discuss some intriguing connections with other fields, in particular that of
query languages for semistructured data.

2 Specification and Derivation
2.1 Specification

Relations. We write R : X←Y to indicate that R is a subset of X×Y . This slightly unusual
notation (with arrows pointing backwards from source Y to target X) makes it a little easier
to read formulae involving composition, defined below. The predicate xRy is shorthand for
(x, y) ∈ R. Two relations R : X ← Y and S : Y ← Z can be composed to form R · S:

x(R · S)z ≡ ∃y ∈ Y : xRy ∧ ySz

A relation R : X ← Y is said to be a function if it relates each y ∈ Y to exactly one x ∈ X.
A particular example of a function is the identity relation idX : X ←X, which maps each
element of X to itself.
Automata and folds. To formulate the specification of our problem as a relation, we shall
first need to cast the familiar notion of an automaton in relational calculus. Functional
programmers know that automata are very similar to the fold-left function ([init , step]),
which takes a constant init , a transition function step. When applied to a list, it sums the
elements from left to right using step, starting with the constant init :

([init , step])[a0, a1, . . . , an−1] = (. . . ((init ‘step’ a0) ‘step’ a1) . . . ‘step’ an−1)

Indeed, fold-left exactly operates like a deterministic state machine, with initial state init
and transition relation step. In a pioneering paper on algebra and automata theory, Eilenberg
and Wright [19] have shown that fold-left can be generalised to take relational arguments.
This has the obvious intuitive interpretation, where each application of step makes a non-
deterministic choice among the possible transitions. All the familiar identities of functional
programming generalise to the relational setting. We shall see several examples of such
identities shortly.

For convenience, we shall think of init and step as relations with types:

init : S ← 1 and step : S ← S ×A

Here 1 denotes a set that has only one element, which we denote as •. If init is a function, it
picks out exactly one element in S. In general, init corresponds to a subset of S, the set of
all initial states of a nondeterministic state machine. That is, s(init)• if s is an initial state.
In what follows, we shall refer to a pair (init , step) (that has the above signature for some
sets S and A) as a machine.

In our problem, both the flow graph and the pattern can be modelled as machines. To
wit, the flow graph is a machine

G = (G0 : N ← 1, G1 : N ←N ×A)
Here G0 is the distinguished start node of the flow graph, and G1 specifies the edges. Thus
([G]) : N ←A∗. The pattern is a machine

P = (P0 : S ← 1, S1 : S ← S ×A)
corresponding to the regular expression, and thus we have ([P]) : S←A∗. In addition to this
machine for the pattern, we also need a specification of its final states. This we chose to
model as a relation: F : 1← S . Note that (as in the case of initial states) we can identify

118 Oege de Moor et al.

such a relation F with a subset of S. That is, •(F)s if s is a final state. The advantage of
defining the final states in this way is the following concise definition of the language of the
pattern:

F · ([P]) : 1←A∗

In words, a string x (a list with elements drawn from A) is in the language of the pattern if
([P]) relates some final state to x. Below we shall sometimes write L(F, P) for the subset of
A∗ defined in this way.

To complete the specification of our problem, we need an operator that encodes universal
quantification in the relational calculus. Given two relations R : X←Z and S : Y ←Z that
share the same source type, the division of R/S : X ← Y is defined by

x(R/S)y ≡ ∀z : ySz ⇒ xRz

That is, R/S is the largest relation T such that T ·S ⊆ R. Expressed as an equivalence, that
means T ⊆ R/S ≡ T · S ⊆ R, for all T : X ← Y .

Readers familiar with relational semantics of imperative programs will recognise the
weakest prespecification [22,23] in this formula.
Specification. Here is the problem that we wish to solve: compute each node n of the flow
graph such that ∀xs ∈ A∗ : n([G])xs⇒ xs ∈ L(F, P) .

We could also have formulated that requirement thus:

∀xs ∈ A∗ : n([G])xs⇒ •(F · ([P]))xs

Hardened veterans of the relational calculus will spot that this formula can be expressed
more concisely with division, thus obtaining

• (F · ([P]))/([G]) n

Now we have arrived at the official specification from which we wish to derive an algorithm:

(F · ([P]))/([G]) : 1←N

The conciseness of this expression may appear somewhat forbidding. As we shall see, how-
ever, it allows us to give a very compact presentation of the algorithm that solves our
problem.

2.2 Derivation

From infinite to finite universal quantification. It is worth noting that our starting point is
non-executable. To see why, consider the universal quantification

∀xs ∈ A∗ : n([G])xs⇒ xs ∈ L(F, P)

Here we quantify over an infinite range, namely all strings with elements drawn from A. It
stands to reason, therefore, that our first step towards an algorithm is to try and reduce
that infinite quantification to a finite one. In terms of the official specification

(F · ([P]))/([G])

we aim to achieve that by shunting ([P]) from the numerator to the denominator.
This is the purpose of the so-called shunting law:

(R · f)/S = R/(S · f◦) (1)

Here f is required to be a function, and f◦ stands for the converse of f (the relation f
with all pairs flipped round). In the left hand side the quantification is over the source
type of f , whereas one the right hand side, the quantification is over the source type of R.
Unfortunately the shunting law is not applicable here, because the relation ([P]) that we
wish to shunt is not necessarily a function.

There is hope, however, because every relation of R : X ← Y can be represented as a
function ΛR : PX ← Y that maps Y to the powerset of X(PX):

ΛR y = {x | xRy }

Universal Regular Path Queries 119

We call ΛR the power transpose of R. The function (Λ) is a bijection, and the original
relation can be retrieved by composing with the membership relation mem : X ← PX:

mem · ΛR = R . (2)

Let us now return to our original goal, namely to reduce the universal quantification in the
specification from finite to infinite. We calculate:

(F · ([P]))/([G])
= {Equation (2)} (F ·mem · Λ([P]))/([G])
= {Equation (1)} (F ·mem)/(([G]) · (Λ([P]))◦)

This has achieved the desired reduction, because instead of universally quantifying over all
strings, we are now quantifying over all sets of states. As the set of states is finite, so is the
collection of all its subsets. It may be helpful to spell out the details of this reduction from
an infinite to a finite quantification. Consider the types in the division (F · mem)/(([G]) ·
(Λ([P]))◦). The right hand side operand has type 1← PS and the left hand operator has
type N ←PS. The division thus quantifies over the elements of PS, which is a finite set. By
contrast, in the original specification we quantified over the source type of ([P]), which is the
infinite set of words A∗.
Eliminating converse. Unfortunately it appears that we have created a new obstacle to
executability in the denominator, however. The composition ([G]) · (Λ([P]))◦ now involves
an existential quantification over all strings since composition (·) quantifies over the target
type of Λ([P])◦ (the source of ([G])) which is A∗. To get rid of this new infinity, we first aim
to massage the converse operator away. For that, we shall need some auxiliary facts about
splits, and the range of a relation. Some readers will recognise that at this point we are
heading for the construction of a product automaton — the precise sense in which that is
true will become apparent shortly.

Given two relations R : X ← Y and S : Z ← Y , we can form a new relation 〈X,Y 〉 :
(X × Z)← Y such that

(x, z)〈R,S〉y = xRy ∧ zSy .

This is called the split of R and S. As an example, 〈([P]), Λ([G])〉 is a relation of type

(N × PS)←A∗

The range (denoted by ran(...)) of a relation T : U ← V is a subset of the identity relation
on U , defined by

u(ran(R))u′ = u = u′ ∧ ∃v : uRv

Writing outl : X ←X × Z and outr : Z ←X × Z for the obvious projection functions, we
have

R · S◦ = outl · ran〈R,S〉 · outr◦ (3)

Both sides of this equation are merely ways of formulating the familiar predicate

x(R · S◦)z = ∃y : xRy ∧ zSy = x(outl · ran〈R,S〉 · outr◦)z

Applying Equation (3) to our programming problem, we obtain

(F ·mem)/(([G]) · (Λ([P]))◦) = (F ·mem)/(outl · ran〈([G]), Λ([P])〉 · outr◦)

At first it might appear that little has been gained here. After all, the range operator itself is
not executable. However, we have now set the scene for applying some well-known identities
from functional programming to the fold-left operators. In what follows, we shall exclusively
concentrate on obtaining an executable expression for the relation

ran〈([G]), Λ([P])〉
which we can regard as a subset of (N × PS).
Simplifying the fold-lefts, and range. First, consider Λ([P]). This is the function correspond-
ing to a non-deterministic machine. It is well-known that this function can itself be expressed
in terms of a deterministic machine. That is, there exists a function P ′ such that

120 Oege de Moor et al.

Λ([P]) = ([P ′]) (4)

In fact, the general proof of this equation was one of the main achievements of the paper
by Eilenberg and Wright [19] that we mentioned earlier. We refrain from spelling out the
detailed definition of P ′.

Using the above equation in our programming problem, we obtain a subexpression of
the form 〈([G]), ([P ′])〉. As every functional programmer knows, this is an inefficient program,
because it makes two independent traversals of its input list. That is, given xs ∈ A∗ we
traverse the xs list twice; once to compute ([G])xs and once to compute ([P ′])xs. Using the
tupling transformation, the same result can be achieved in a single pass over xs. Formally,
there exists a composite machine G⊗ P ′ such that

〈([G]), ([P ′])〉 = ([G⊗ P ′]) (5)

This identity is affectionately known as the banana-split law [35]. It was not invented to
reason about automata, but rather to capture the tupling transformation [15,45] in a calcu-
lational style. Again we leave it to the interested reader to work out the detailed definition of
G⊗P ′. In formal language theory, it is known as the product machine of G and P ′ [24, page
59]. An example of a graph G, a pattern P , deterministic pattern P ′ and the cross product
G⊗ P ′ is shown in Figure 3. The final states of the pattern and cross product have thickly
drawn edges.

Fig. 3. A graph, pattern, deterministic pattern, and cross product.

We have achieved our task if we can give an executable expression for ran([G⊗ P ′]) .
Before continuing however, we need a closure operator on relations. The closure of a relation
R : X ← X is the smallest reflexive and transitive relations that contains R. We write R∗

for the closure of R: R∗ = id ∪R ∪ (R ·R) ∪ (R ·R ·R) ∪ . . .
In describing ran([G⊗ P ′]) in terms of machines, we are asking for the set of reachable

states of the machine G⊗ P ′. Given that reading, it should not come as a surprise that

ran([M]) = ran((M1 · outl◦)∗ ·M0) (6)

In words, to find the reachable states of a machine M , proceed as follows. Start with the
initial states M0. Then find all states reachable via zero or more transitions in the step
relation M1. Naturally this reachability problem can be implemented through depth-first
search. Summarising the results of this section, we derived that

ran〈([G]), Λ([P])〉 = ran(((G⊗ P ′)1 · outl◦)∗ · (G⊗ P ′)0)

This completes our derivation.

Universal Regular Path Queries 121

2.3 Summary and Complexity Analysis

The above exposition was leisurely, aimed at readers who are unfamiliar with relational
calculus. We now repeat the same calculation as an expert would have written it in his
notebook, and we analyse the result. First, the problem is reduced to computing the range
of a relation:

(F · ([P]))/([G])
= {cancelling Λ (reverse)} (F ·mem · Λ([P]))/([G])
= {shunting} (F ·mem)/(([G]) · (Λ([P]))◦)
= {split and range} (F ·mem)/(outl · ran〈([G]), Λ([P])〉 · outr◦)

Next, we elaborate the range expression:

ran〈([G]), Λ([P])〉
= {Eilenberg-Wright} ran〈([G]), ([P ′])〉
= {banana split} ran([G⊗ P ′])
= {range of fold-left} ran(((G⊗ P ′)1 · outl◦)∗ · (G⊗ P ′)0)

In words, we have derived an algorithm that proceeds in four steps:
1. Let P ′ be the deterministic equivalent of P .
2. Take product machine G⊗ P ′.
3. Compute the reachable states of G⊗ P ′.
4. Return the set {n |∀s : (n, s) reachable : s final in P ′} .

What is the time complexity of this algorithm? There are a number of characteristics of our
application that simplify the analysis. First, the pattern is very small compared to the flow
graph, so we can regard its size as a constant. Furthermore, in a typical flow graph all nodes
have a bounded out-degree, so the number of edges is linear in the number of nodes. It thus
stands to reason that we measure the complexity in terms of the number of nodes in G. The
crucial step is the third, where we compute the reachable states of the product machine.
The size of that machine is linear in the size of G. Furthermore, the reachable states can be
computed by depth-first search, again linear in G. We conclude that the overall complexity
of the algorithm is linear. It is also worth noting that when using this algorithm in an
optimising compiler, the patterns for recognising optimisation opportunities are fixed. Its
only input is the program which is converted to the flowgraph G. Thus, the computational
expense imposed by the patterns can be considered constant.

3 Implementing Universal Regular Path Queries

Let us now return to the original problem from the introduction, which may have seemed
slightly more general than the algorithm that we have just derived.

First of all, our machines operate on predicates, not symbols that are drawn from a
finite set. That is only a seeming generalisation, for we did not exploit the finiteness of the
alphabet anywhere in our proofs.

The notion of acceptance of sequences of propositions is also a special case of our earlier
definitions. A transition a

p→ b in the pattern is possible on input q precisely when q ⇒ p.
This is a slightly more complicated way of mapping labelled edges to transitions, but there
is nothing special about the resulting transition relation.

All that remains, therefore, is to cater for the presence of free variables, and finding
substitutions for those variables. This we can do by regarding the pattern with variables as
mere shorthand for a family of ground patterns. By writing the algorithm we have derived
above in a logic programming language, with the pattern as a predicate that takes the
variables as explicit arguments, we get a program that exhibits exactly the desired behaviour.

122 Oege de Moor et al.

However, as we shall see, the program employs logical negation, which is logically sound only
if all variables have been instantiated to ground terms.

Astute readers will have noticed a subtle discrepancy between our informal discussion
of the problem in the introduction, and its formalisation in relational calculus. In the intro-
duction, we stipulated that there must exist a path v → w in the language of the pattern, as
well as requiring that all paths v → w are in that language. The difference is only important,
of course, if w is not reachable from v. Here we shall take advantage of the insistence on the
existence of a suitable path (which is dictated by our application to program transforma-
tion), and first run an existential path query to instantiate the variables appropriately. We
can then run the ground universal query to check that the instantiation is indeed a valid
answer.

Below we shall show how a particular query can be compiled to a Prolog program. Such
compilation happens when the transformations and the associated path queries are known;
the queries are then run when we also have a flow graph to transform. The particular
implementation of Prolog that we have chosen is called XSB [46,48]. It is particularly suitable
for experiments in program transformation and analysis [16].

3.1 Common Subexpression Elimination

Common subexpression elimination is applicable at node N if all paths from program entry
to N can be split into four parts:
– First there is a part that we do not care about, consisting of zero or more edges.
– Next, we encounter an edge whose target is an assignment W := A, where A is a non-

trivial expression and the set of variables used in A is V s. Also, the variable W should
not occur in V s.

– Then we have zero or more edges to nodes that do not define W , nor any of the variables
in V s.

– Finally, we have an edge target at N , where the statement is of the form X := A.

If this condition is satisfied, and there exists at least one path of the appropriate form, the
statement at node N can be replaced by the assignment X := W .

We could write the above condition as the following regular path query.

{}*;
{tgt’(assign(W,A)), not(triv(A)), uses(A,Vs), not(elem(V,Ws))} ;
{not(def’(W)), not(somedefs’(Vs))}* ;
{tgt’(assign(X,A))}

Here each of the goals in curly brackets matches a single edge. Each predicate that is marked
with an apostrophe takes the edge as an implicit argument. Below we show how to map this
query into Prolog, and that mapping makes the implicit edge arguments explicit. To illustrate
the use of the query, an example program is shown in Figure 4(a), and the results of running
the query in Prolog are shown in Figure 4(b). Note that it is a property of this query that
it can succeed only by instantiating all the free variables to ground terms. We shall rely
on that property in what follows. The query will depend on its free variables (W,A,Vs,X).
We can represent these variables as free variables in XSB. We can also put them in a term
wrapper (subst) to give us a representation of substitution Phi which can then be passed
between predicates

Phi = subst(W,A,Vs,X)
To define the flow graph itself in Prolog, we declare the nodes and edges with clauses such
as these:
node(0) .
node(1) .
edge(0,e0,1) .

Universal Regular Path Queries 123

0: entry
1: w := a + g(b,c)
2: i := g(a,b)
3: if i < 10 then goto 4

else goto 6
4: x := a + g(b,c)
5: i := i + x; goto 3
6: a := g(a,b)
7: w := a + g(b,d)
8: i := g(a,b)
9: if i < 10 then goto 10

else goto 12
10: x := a + g(b,d)
11: i := i + x; goto 9
12: a := g(a,b)
13: exit

(a)

| ?- univpaths(subst(W,A,Vs,X),0,N).

W = w
A = plus(var(a),g(var(b),var(c)))
Vs = [a,b,c]
X = x
N = 4;

W = w
A = plus(var(a),g(var(b),var(d)))
Vs = [a,b,d]
X = x
N = 10;

no

(b)

Fig. 4. Example program (a) and an example run of query (b).

The middle argument of the edge predicate is an identifier for the relevant edge, so
edge(N_0,E,M_0) and edge(N_1,E,M_1) implies that N_0 = N_1 and M_0 = M_1.

The statements at each node are specified by the relevant clauses of the stmt predicate:
stmt(assign(i,g(var(a),var(b))),2) .
stmt(if(less(var(i),const(10))),3) .
We can then check for the statement at the target of an edge as follows:
tgt(S,E) :- edge(_N,E,M), stmt(S,M) .

Note how the edge E has been made explicit. Similar definitions can be made for all the
constituents of the above regular path query, and a summary can be found in Figure 5.
Using these definitions, we can define the predicate goal, with a separate case for each of
the constituents of our query:
:- table goal/3 .
goal(0,subst(_W,_A,_Vs,_X),_E) .
goal(1,subst(W,A,Vs,_X),E) :- tgt(assign(W,A),E), not(triv(A)),

not(elem(W,Vs)), uses(A,Vs) .
goal(2,subst(W,_A,Vs,_X),E) :- not(def(W,E)), not(somedefs(Vs,E)) .
goal(3,subst(_W,A,_Vs,X),E) :- tgt(assign(X,A),E) .

The tabling directive for goal is important for efficiency, as the same goal may be evaluated
many times at a particular edge.

elem(A,[A|_As]) .
elem(A,[_B|As]) :- elem(A,As) .
src(S,E) :- edge(N,E,_M),stmt(S,N) .
tgt(S,E) :- edge(_N,E,M),stmt(S,M) .
def(V,E) :- tgt(assign(V,_X),E) .
somedefs(Vs,E) :- elem(V,Vs),def(V,E) .
triv(const(_C)) .
triv(var(_V)) .
append([],X,X) .
append([A|X],Y,[A|Z]) :- append(X,Y,Z) .
uses(const(_C),[]) .
uses(var(V),[V]) .
uses(plus(P,Q),Z) :- uses(P,X), uses(Q,Y), append(X,Y,Z) .
uses(g(P,Q),Z) :- uses(P,X), uses(Q,Y), append(X,Y,Z) .

Fig. 5. Prolog preliminaries.

124 Oege de Moor et al.

With the definition of goal in hand, we can construct the nondeterministic automaton
that corresponds to the pattern. We name the states of the pattern {a,b,c}, with a the
initial state, and c the final state. One can now define the possible transitions thus:
npattern(Phi,a,a,E) :- goal(0,Phi,E) .
npattern(Phi,a,b,E) :- goal(1,Phi,E) .
npattern(Phi,b,b,E) :- goal(2,Phi,E) .
npattern(Phi,b,c,E) :- goal(3,Phi,E) .

3.2 Solving Existential Path Queries

To solve an existential path query, we first construct the product of the flow graph and the
non-deterministic pattern:
nproduct(Phi,N1,A1,N2,A2) :- edge(N1,E,N2), npattern(Phi,A1,A2,E) .

This definition says that there exists a transition from (N1,A1) to (N2,A2) in the product
if there exists corresponding transitions from N1 to N2 and from A1 to A2.

We now need to compute what states are reachable in the product. Using tabling, we can
write this simply as the definition of reflexive transitive closure in Prolog:
:- table nreach/5 .
nreach(_Phi,N1,P1,N1,P1) .
nreach(Phi,N1,P1,N2,P2) :- nproduct(Phi,N1,P1,Na,Pa),

nreach(Phi,Na,Pa,N2,P2) .

There exists a path from N1 to N2 in the flow graph in the language of the pattern if there
exists a path from (N1,a) to (N2,c) in the product. Accordingly, we define:
somepaths(Phi,N1,N2) :- nreach(Phi,N1,a,N2,c) .

Interested readers may find it an amusing exercise to formally derive this program in rela-
tional calculus: the derivation for existential queries is much simpler than that for universal
ones.

3.3 Solving Universal Regular Path Queries

Our next task is to write a program for solving universal regular path queries. For that, we
need a deterministic version of the pattern automaton. The construction of that automaton
is a little tricky, so we defer its discussion till later. For now it suffices to know that it is given
by three predicates, namely state, final and pattern. The first of these corresponds to
node and it is true of all the states in the pattern automaton. The second predicate singles
out those states that are final. The last predicate pattern(Phi,P1,P2,E) checks whether
for a particular substitution Phi, the transition from state P1 to P2 in the pattern automaton
is implied by the edge E.

Recall that in our algorithm, we need to compute the product automaton of the flow
graph and the pattern. The definition is analogous to that in the nondeterministic case:
product(Phi,N1,P1,N2,P2) :- edge(N1,E,N2),

pattern(Phi,P1,P2,E) .

That is, we can make the transition from the product state (N1,P1) to (N2,P2) if there are
relevant edges in the flow graph, and in the pattern.

The next step in the algorithm is to compute the reachable states in the product au-
tomaton. Again we use tabling:
:- table reach/5 .
reach(_Phi,N1,P1,N1,P1) .
reach(Phi,N1,P1,N2,P2) :- product(Phi,N1,P1,Na,Pa), reach(Phi,Na,Pa,N2,P2) .

Finally, we need to ensure that all paths from N1 to N2 are in the language of our pattern,
that is

Universal Regular Path Queries 125

allpaths(Phi,N1,N2) :- bagof(P, reach(Phi,N1,p1,N2,P), Ps),
all(final)(Ps) .

The bagof primitive collects all P that can be reached (with the given instantiations of the
variables) in Ps. It then only remains to check that all states in Ps are final. The higher-order
predicate all is defined by
:- hilog all .
all(_P)([]).
all(P)([X|Xs]) :- P(X), all(P)(Xs) .

In the introduction of this section, we already indicated that the determinization of the
pattern requires negation, and that this imposes the requirement that all variables in the
substitution Phi are ground in the predicate allpaths(Phi,N1,N2). To ensure that this
requirement is indeed satisfied, we define
univpaths(Phi,N1,N2) :- somepaths(Phi,N1,N2), ground(Phi),

allpaths(Phi,N1,N2) .

The program given here is close to that we derived in Section 2.2. Although we have not
worked out the formal details, we believe the transition from relational algebra to a Prolog
program could be mechanised. Obviously the difficult point in such a mechanisation would
be the treatment of negation in association with non-ground queries.

3.4 Deterministic Pattern Automaton

It now remains to define the transition relation of the deterministic pattern automaton,
which we have called pattern(Phi,P1,P2,E). We shall split its definition into two parts:
pattern(Phi,P1,P2,E) :- goals(P1,I,Phi,E), pat(I,P1,P2) .

The role of the two parts on the right hand side is as follows:

– The second part is a predicate pat(I,P1,P2). Here I is a 4-bit number that we shall
interpret as a bit vector: the least significant bit indicates whether goal(0,...) was
proved at edge E, the second bit indicates whether goal(1,...) was proved, and so on.
Based on the bitvector I, pat(I,P1,P2) gives the transition relation between the states
p0..p7.

– The first part of pattern is goals(P1,I,Phi,E). It sets the bit vector I according to
the provability of the four goals.

As an example, let us consider the state p2, which corresponds to the singleton set {b}. We
can make transitions according to goal2 or goal3 from this state:
goals(p2,I,Phi,E) :- try(2,I2,Phi,E), try(3,I3,Phi,E), I is 4*I2 + 8*I3 .

The predicate try(K,B,Phi,E) attempts to prove goal number K, setting bit B to 0 or 1
accordingly:
try(K,1,Phi,E) :- goal(K,Phi,E) .
try(K,0,Phi,E) :- tnot(goal(K,Phi,E)) .

Here tnot is the special version of negation necessary for the correct handling of tabled
predicates. Like its ordinary counterpart in logic programming, in general we require that it
is applied only to ground arguments. This is the reason that we needed to resort to existential
queries to do the variable binding before calling the algorithm we derived earlier.

It is interesting to note that if we restrict our attention to variables whose values are
drawn from a finite domain, one could employ a constraint logic programming language to
implement the algorithm for universal queries. The logical negation operator tnot could then
be replaced by negation for constraints. We are currently investigating such an implemen-
tation, and weighing its advantages against the restrictions it places on the expressiveness
of path queries.

126 Oege de Moor et al.

4 Discussion

This paper (originally published as [18]) is part of a larger effort to construct a toolkit
for easy experimentation with compiler optimisations. In previous work, we have specified
the side conditions of such transformations in a variant of temporal logic [30], inspired by
the work of Steffen and his coworkers on specifying data flow analyses through temporal
logic [50]. The formulae in temporal logic are verified using a model checker, which also
finds instantiations of free variables. We noticed that many of our examples do not use the
full power of temporal logic, and this motivated the exploration of universal regular path
queries. In hindsight it is a very obvious thing to do, given the close connection between
path problems, regular algebra and program analysis [5, 51, 52]. It remains to be seen how
the algorithm presented here compares in practice with our use of a model checker.

Verbarere, Ettinger, and de Moor [53] have developed these ideas further as part of
JunGL, a scripting language that allows programmers to write scripts that implement refac-
torings. Refactorings are source-to-source program transformations that use side conditions
that capture dataflow properties. These dataflow properties use syntax inspired by [34] but
are based on the path queries as described here. Sittampalam, de Moor, and Larsen [49] have
also developed a incremental algorithm for solving universal regular path queries. When they
are used to specify non-trivial program analyses as side conditions to program transforma-
tions it is important to solve these queries incremenatally as it can be prohibitively expensive
to re-run such analyses after each transformation.

Liu and her colleagues [32, 33] have built upon the work presented here by specifying
a complete set of algorithms and data structures to more efficiently solve both universal
and existential path queries. This has resulted in improvements in time complexity. Other
contributions of this work include a precise complexity analysis of these algorithms.

Two of us (Van Wyk and Lacey) have been working on a method of proving the cor-
rectness of program transformations whose side conditions are stated in temporal logic, in
collaboration with Neil Jones and Carl Cristian Frederiksen [28, 29]. A draft of their paper
prompted the exploration of a simplified formalism for the side conditions. It appears that
proof methods for the temporal formalism carry over without much modification to regular
expressions.

There are multiple ways in which the present algorithm could be improved. In particular,
it will pay to start out with a minimal deterministic automaton for the pattern [1]. It is still
possible for the composite automaton to become nondeterministic during the processing of
substitutions, but at least the nondeterminism will be restricted to those places where it is
actually necessary.

We did not set out to apply our previous work on relational algebra to this problem, but
the proof turned out to be so pretty that we decided to include it in this paper. It would be
interesting to see a further exploration of automata and language theory in this style (see
also [4,7,44]). The application of program transformation to algorithms involving automata
was pioneered by Bob Paige [8, 14,26].

Very recently we became aware that existential regular path queries are a well studied
subject in the database community. In particular, the query language UnQL provides the
possibility of querying hierarchically structured data through the use of regular expressions
that contain variables [10]. The queries are existential in that it suffices to find some path that
is in the regular language, rather than requiring that all paths (between the relevant vertices)
are in the regular language. It would be interesting to investigate whether the techniques
used to speed up existential regular path queries [36] can be adapted for universal queries
as well. This connection with database research also follows a lead of Bob Paige: his own
language for expressing side conditions of transformations in APTS [40] was inspired by
DataLog.

Universal Regular Path Queries 127

Acknowledgements

Three anonymous referees suggested many improvements to the presentation of the original
version of this paper which appeared in Higher Order and Symbolic Computation [18].
Oege de Moor would like to thank Annie Liu for many constructive criticisms on the work
presented here; she especially helped to improve the presentation of the derivation. She also
made us aware of the existence of XSB as an appropriate tool for this type of experiment.
Shin-Cheng Mu and Richard Bird provided valuable comments on an early draft. We would
like to thank Microsoft Research for its generous support of this research programme, as
part of the Intentional Programming project.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman: Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1985.

2. A. W. Appel: Modern Compiler Implementation in ML. Cambridge University Press,
1998.

3. U. Assmann: How to uniformly specify program analysis and transformation with graph
rewrite systems. In P. Fritzson, editor, Compiler Construction 1996, Lecture Notes in
Computer Science 1060. Springer, 1996.

4. R. Backhouse: Fusion on languages. In 10th European Symposium on Programming,
ESOP 2001, Lecture Notes in Computer Science 2028, 107–121. Springer, 2001.

5. R. C. Backhouse and B. A. Carré: Regular algebra applied to path-finding problems.
Journal of the Institute of Mathematics and its Applications, 15:161–186, 1975.

6. A. J. C. Bik, P. J. Brinkhaus, P. M. W. Knijnenburg, and H. A. G. Wijshoff: Transfor-
mation mechanisms in MT1. Technical report, Leiden Institute of Advanced Computer
Science, 1998.

7. R. S. Bird and O. De Moor: Relational program derivation and context-free lan-
guage recognition. In A. W. Roscoe, editor, A Classical Mind: Essays dedicated to
C.A.R. Hoare, 17–35. Prentice-Hall International, 1994.

8. B. Bloom and R. Paige: Transformational design and implementation of a new efficient
solution to the ready simulation problem. Science of Computer Programming, 24(3):189–
220, 1995.

9. J. M. Boyle, K. W. Dritz, M. M. Muralidharan, and R. Taylor: Deriving sequential and
parallel programs from pure LISP specifications by program transformation. In L. G.
L. T. Meertens, editor, Proceedings of the IFIP TC2/WG 2.1 Working Conference on
Program Specification and Transformation, 1–19. North-Holland, 1987.

10. P. Buneman, M. Fernandez, and D. Suciu: UnQL: A query language and algebra for
semistructured data based on structural recursion. VLDB Journal, 9(1):76–110, 2000.

11. J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg: Type analysis and data
structure selection. In B. Möller, editor, Constructing Programs from Specifications,
126–164. North-Holland, 1991.

12. J. Cai and R. Paige: Towards increased productivity of algorithm implementation. ACM
Software Engineering Notes, 18(5):71–78, 1993.

13. J. Cai, R. Paige, and R. Tarjan: More efficient bottom-up multi-pattern matching in
trees. Theoretical Computer Science, 106(1):21–60, 1992.

14. C. Chang and R. Paige: From regular expressions to DFAs using compressed NFAs.
Theoretical Computer Science, 178(1-2):1–36, 1997.

15. W. N. Chin: Fusion and tupling transformations: Synergies and conflicts (Invited paper).
In Fuji International Workhsop on Functional and Logic Programming, 176–195. World
Scientific, 1995.

16. M. Codish, B. Demoen, and K. Sagonas: Xsb as the natural habitat for general purpose
program analysis. Technical report, KU Leuven, 1996.

128 Oege de Moor et al.

17. J. R. Cordy, I. H. Carmichael, and R. Halliday: The TXL programming language, version
8. Legasys Corporation, April 1995.

18. O. de Moor, D. Lacey, and E. Van Wyk: Universal regular path queries. Higher Order and
Symbolic Computation, 16(1–2):15–35, Special issue dedicated to Robert Paige. March
– June 2003.

19. S. Eilenberg and J. B. Wright: Automata in general algebras. Information and Control,
11(4):452–470, 1967.

20. R. E. Faith, L. S. Nyland, and J. F. Prins: KHEPERA: A system for rapid implemen-
tation of domain-specific languages. In Proceedings USENIX Conference on Domain-
Specific Languages, 243–255, 1997.

21. D. Hanson, C. W. Fraser, and T. A. Proebsting: Engineering a simple, efficient code
generator generator. ACM Letters on Programming Languages and Systems, 1(3):213–
226, 1992.

22. C. A. R. Hoare and J. He: The weakest prespecification, I. Fundamenta Informaticae,
9(1):51–84, 1986.

23. C. A. R. Hoare and J. He: The weakest prespecification, II. Fundamenta Informaticae,
9(2):217–251, 1986.

24. J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

25. M. Jourdan, D. Parigot, Julié, O. Durin, and C. Le Bellec: Design, implementation and
evaluation of the FNC-2 attribute grammar system. In Conference on Programming
Languages Design and Implementation. Published as ACM Sigplan Notices, 25(6), 209–
222, 1990.

26. J. P. Keller and R. Paige: Program derivation with verified transformations — a case
study. Communications on Pure and Applied Mathematics, 48(9–10), 1996.

27. M. Klein, J. Knoop, D. Koschützski, and B. Steffen: DFA & OPT-METAFrame: a toolkit
for program analysis and optimization. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’96), Lecture Notes in Computer Science 1055, 418–421.
Springer, 1996.

28. D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen: Proving correctness of
compiler optimizations by temporal logic. In Proc. 29th ACM Symposium on Principles
of Programming Languages, 283–294. ACM Press, 2002.

29. D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen: Compiler optimization
correctness by temporal logic. Higher Order and Symbolic Computation, 17(3):173–206,
September 2003.

30. D. Lacey and O. de Moor. Imperative program transformation by rewriting: In R. Wil-
helm, editor, Proceedings of the 10th International Conference on Compiler Construc-
tion, Lecture Notes in Computer Science 2027, 52–68. Springer, 2001.

31. P. Lipps, U. Mönke, and R. Wilhelm: OPTRAN — a language/system for the speci-
fication of program transformations: system overview and experiences. In Proceedings
2nd Workshop on Compiler Compilers and High Speed Compilation, Lecture Notes in
Computer Science 371, 52–65, 1988.

32. Y. A. Liu, T. Rothamel, F. Yu, S. D. Stoller, and N. Hu: Parametric regular path
queries. In PLDI ’04: Proceedings of the ACM Sigplan 2004 Conference on Programming
language design and implementation, 219–230, New York, ACM Press, 2004.

33. Y. A. Liu and S. D. Stoller: From datalog rules to efficient programs with time and
space guarantees. In PPDP ’03: Proceedings 5th ACM Sigplan International Conference
on Principles and practice of declaritive programming, 172–183, New York, ACM Press,
2003.

34. Y. A. Liu and S. D. Stoller: Querying complex graphs. In P. V. Hentenryck, editor, 8th
International Symposium on Practical Aspects of Declarative Languages (PADL), 16–30.
ACM Press, 2006.

Universal Regular Path Queries 129

35. E. Meijer, M. Fokkinga, and R. Paterson: Functional programming with bananas, lenses,
envelopes and barbed wire. In J. Hughes, editor, Proceedings of the 1991 ACM Confer-
ence on Functional Programming Languages and Computer Architecture, Lecture Notes
in Computer Science 523, 124–144. Springer, 1991.

36. T. Milo and D. Suciu: Index structures for path expressions. In International Conference
on Database Theory ’99, Lecture Notes in Computer Science 1540, 277–295. Springer,
1999.

37. S. Muchnick: Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
38. R. Paige: Programming with invariants. IEEE Software, 3(1):56–69, 1986.
39. R. Paige: Real-time simulation of a set machine on a RAM. In N. Janicki and W. Koczko-

daj, editors, Computing and Information, volume 2, 69–73. Canadian Scholars’ Press,
1989.

40. R. Paige: Viewing a program transformation system at work. In M. Hermenegildo
and J. Penjam, editors, Joint 6th International Conference on Programming Language
Implementation and Logic Programming (PLILP) and 4th International conference on
Algebraic and Logic Programming (ALP), Lecture Notes in Computer Science 844, 5–24.
Springer, 1991.

41. R. Paige: Future directions in program transformations. Computing Surveys, 28A(4),
1996.

42. R. Paige and S. Koenig: Finite differencing of computable expressions. ACM Transac-
tions on Programming Languages and Systems, 4(3):401–454, 1982.

43. R. Paige, R. Tarjan, and R. Bonic: A linear time solution to the single function coarsest
partition problem. Theoretical computer science, 40(1):67–84, 1985.

44. H. A. Partsch: Transformational program development in a particular problem domain.
Science of Computer Programming, 7(2):99–241, 1986.

45. A. Pettorossi: Methodologies for transformations and memoing in applicative languages.
Ph.D. thesis CST-29-84, University of Edinburgh, Scotland, 1984.

46. I. V. Ramakrishnan, P. Rao, K. F. Sagonas, T. Swift, and D. S. Warren: Efficient tabling
mechanisms for logic programs. In International Conference on Logic Programming,
697–711, 1995.

47. T. W. Reps and T. Teitelbaum: The Synthesizer Generator: A system for constructing
language-based editors. Texts and Monographs in Computer Science. Springer, 1989.

48. K. Saganos: The XSB system v2.4: Programmer’s Manual. 2001.
49. G. Sittampalam, O. de Moor, and K. F. Larsen: Incremental execution of transformation

specifications. In POPL ’04: Proceedings of the 31st ACM Sigplan-Sigact Symposium on
Principles of programming languages, 26–38. ACM Press, 2004.

50. B. Steffen: Data flow analysis as model checking. In Proceedings of Theoretical Aspects
of Computer Science (TACS ’91), Lecture Notes in Computer Science 526, 346–364.
Springer, 1991.

51. R. E. Tarjan: Fast algorithms for solving path problems. Journal of the Association for
Computing Machinery, 28(3):594–614, 1981.

52. S. W. K. Tjiang and J. L. Hennessy: Sharlit — a tool for building optimizers. In ACM
Sigplan Conference on Programming Language Design and Implementation, 1992.

53. M. Verbaere, R. Ettinger, and O. de Moor: JunGL: a scripting language for refactoring.
In D. Rombach and M. L. Soffa, editors, 28th International Conference on Software
Engineering (ICSE). ACM Press, 2006.

54. E. Visser, Z. Benaissa, and A. Tolmach: Building program optimizers with rewriting
strategies. In International Conference on Functional Programming ’98, ACM Sigplan,
13–26. ACM Press, 1998.

55. D. Whitfield and M. L. Soffa: An approach for exploring code-improving transforma-
tions. ACM Transactions on Programming Languages and Systems, 19(6):1053–1084,
1997.

Derivation of Efficient Logic Programs by Specialization
and Reduction of Nondeterminism

Alberto Pettorossi1, Maurizio Proietti2, and Sophie Renault3

1 DISP, University of Roma Tor Vergata, Roma, Italy. pettorossi@info.uniroma2.it
2 IASI-CNR, Roma, Italy. proietti@iasi.rm.cnr.it
3 European Patent Office, Rijswijk, The Netherlands. srenault@epo.org

Summary. Program specialization is a program transformation methodology which improves pro-
gram efficiency by exploiting the information about the input data which are available at compile
time. We show that current techniques for program specialization based on partial evaluation do
not perform well on nondeterministic logic programs. We then consider a set of transformation
rules which extend the ones used for partial evaluation, and we propose a strategy for guiding the
application of these extended rules so to derive very efficient specialized programs. The efficiency
improvements which sometimes are exponential, are due to the reduction of nondeterminism and to
the fact that the computations which are performed by the initial programs in different branches of
the computation trees, are performed by the specialized programs within single branches. In order
to reduce nondeterminism we also make use of mode information for guiding the unfolding process.
To exemplify our technique, we show that we can automatically derive very efficient matching pro-
grams and parsers for regular languages. The derivations we have performed could not have been
done by previously known partial evaluation techniques.

Keywords: automatic program derivation, logic programming, program specialization, program
transformation, transformation rules and strategies.

1 Introduction

The goal of program specialization [21] is the adaptation of a generic program to a specific
context of use. Partial evaluation [7,21] is a well-established technique for program special-
ization which from a program and its static input (that is, the portion of the input which
is known at compile time), allows us to derive a new, more efficient program in which the
portion of the output which depends on the static input, has already been computed. Partial
evaluation has been applied in several areas of computer science, and it has been applied also
to logic programs [13,26,29], where it is also called partial deduction. In this paper we follow
a rule-based approach to the specialization of logic programs [4,36,37,41]. In particular, we
consider definite logic programs [28] and we propose new program specialization techniques
based on unfold/fold transformation rules [6, 46]. In our approach, the process of program
specialization can be viewed as the construction of a sequence, say P0, . . . , Pn, of programs,
where P0 is the program to be specialized, Pn is the derived, specialized program, and every
program of the sequence is obtained from the previous one by applying a transformation
rule.

As shown in [36,41], partial deduction can be viewed as a particular rule-based program
transformation technique using the definition, unfolding, and folding rules [46] with the
following two restrictions: (i) each new predicate introduced by the definition rule is defined
by precisely one non-recursive clause whose body consists of precisely one atom (in this
sense, according to the terminology of [16], partial deduction is said to be monogenetic),
and (ii) the folding rule uses only clauses introduced by the definition rule. In what follows

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 130–177.
c© 2008 Springer.

Derivation of Efficient Logic Programs 131

the definition and folding rules which comply with restrictions (i) and (ii), are called atomic
definition and atomic folding, respectively.

In Section 3 we will see that the use of these restricted transformation rules makes it eas-
ier to automate the partial deduction process, but it may limit the program improvements
which can be achieved during program specialization. In particular, when we perform partial
deduction of nondeterministic programs using atomic definition, unfolding, and atomic fold-
ing, it is impossible to combine information present in different branches of the computation
trees, and as a consequence, it is often the case that we cannot reduce the nondeterminism
of the programs.

This weakness of partial deduction is demonstrated in Section 3.3 where we revisit the
familiar problem of looking for occurrences of a pattern in a string. It has been shown
in [11, 13, 15] that by partial deduction of a string matching program, we may derive a
deterministic finite automaton (DFA, for short), similarly to what is done by the Knuth–
Morris–Pratt algorithm [22]. However, in [11, 13, 15] the string matching program to which
partial deduction is applied, is deterministic. We show that by applying partial deduction to
a nondeterministic version of the matching program, one cannot derive a specialized program
which is deterministic, and thus, one cannot get a program which corresponds to a DFA.

Conjunctive partial deduction [8] is a program specialization technique which extends par-
tial deduction by allowing the specialization of logic programs w.r.t. conjunctions of atoms,
instead of a single atom. Conjunctive partial deduction can be realized by the definition,
unfolding, and folding rules where each new predicate introduced by the definition rule is
defined by precisely one nonrecursive clause whose body is a conjunction of atoms (in this
sense conjunctive partial deduction is said to be polygenetic).

Conjunctive partial deduction may sometimes reduce nondeterminism. In particular,
it may transform generate-and-test programs into programs where the generation phase
and the test phase are interleaved. However, as shown in Section 3.3, conjunctive partial
deduction is not capable to derive from the nondeterministic version of the matching program
a new program which corresponds to a DFA.

In our paper, we propose a specialization technique which enhances both partial de-
duction and conjunctive partial deduction by making use of more powerful transformation
rules. In particular, in Section 4 we consider a version of the definition introduction rule so
that a new predicate may be introduced by means of several non-recursive clauses whose
bodies consist of conjunctions of atoms, and we allow folding steps which use these predicate
definitions consisting of several clauses. We also consider the following extra rules: head gen-
eralization, case split, equation elimination, and disequation replacement. These rules may
introduce, replace, and eliminate equations and negated equations between terms.

Similarly to [14, 40, 46], our extended set of program transformation rules preserves the
least Herbrand model semantics. For the logic language with equations and negated equa-
tions considered in this paper, we adopt the usual Prolog operational semantics with the
left-to-right selection rule, where equations are evaluated by using unification. Unfortunately,
the unrestricted use of the extended set of transformation rules may not preserve the Prolog
operational semantics. To overcome this problem, we consider: (i) the class of safe programs
and (ii) suitably restricted transformation rules, called safe transformation rules. Through
some examples we show that the class of safe programs and the safe transformation rules
are general enough to allow significant program specializations.

Our notions of safe programs and transformation rules, and also the notion of determin-
ism are based on the modes which are associated with predicate calls [32, 49]. We describe
these notions in Section 5, where we also prove that the application of safe transformation
rules preserve the operational semantics of safe programs.

Then, in Section 6, we introduce a strategy, called Determinization, for applying our
safe transformation rules in an automatic way, so to specialize programs and reduce their
nondeterminism. The new features of our strategy w.r.t. other specialization techniques

132 Alberto Pettorossi et al.

are: (i) the use of mode information for unfolding and producing deterministic programs,
(ii) the use of the case split rule for deriving mutually exclusive clauses (e.g. from the clause
H ← Body we may derive the two clauses: (H ← Body){X/t} and H ← X �= t,Body), and
(iii) the use of the enhanced definition and folding rules for replacing many clauses by one
clause only, thereby reducing nondeterminism.

Finally, in Section 7, we show by means of some examples which refer to parsing and
matching problems, that our strategy is more powerful than both partial deduction and
conjunctive partial deduction. In particular, given a nondeterministic version of the matching
program, by using our strategy one can derive a specialized program which corresponds to
a DFA.

2 Logic Programs with Equations and Disequations between Terms

In this section we introduce an extension of definite logic programs with equations and
negated equations between terms. Negated equations will also be called disequations. The
introduction of equations and disequations during program specialization allows us to de-
rive mutually exclusive clauses. The declarative semantics we consider, is a straightforward
extension of the usual least Herbrand model of definite logic programs. The operational
semantics essentially is SLD-resolution as implemented by most Prolog systems: atoms are
selected from left to right, and equations are evaluated by using unification. This operational
semantics is sound w.r.t. the declarative semantics (see Theorem 2 below). However, since
non-ground disequations can be selected, a goal evaluated according to our operational se-
mantics can fail, even if it is true according to the declarative semantics. In this sense, the
operational semantics is not complete w.r.t. the declarative semantics.

For the notions of substitution, composition of substitutions, identity substitution, domain
of a substitution, restriction of a substitution, instance, most general unifier (abbreviated as
mgu), ground expression, ground substitution, renaming substitution, variant, and for other
notions not defined here, we refer to [28].

2.1 Syntax

The syntax of our language is defined starting from the following infinite and pairwise disjoint
sets:
(i) variables: X,Y,Z,X1, X2, . . . ,
(ii) function symbols (with arity): f, f1, f2, . . . , and
(iii) predicate symbols (with arity): true, =, �=, p, p1, p2, . . . The predicate symbols true,
=, and �= are said to be basic, and the other predicate symbols are said to be non-basic.
Predicate symbols will also be called predicates, for short.
Now we introduce the following sets: (iv) Terms: t, t1, t2, . . . , (v) Basic atoms: B,B1, B2, . . . ,
(vi) Non-basic atoms: A,A1, A2, . . . , and (vii) Goals : G,G1, G2, . . . Their syntax is as follows:

Terms : t ::= X | f(t1, . . . , tn)
Basic Atoms : B ::= true | t1 = t2 | t1 �= t2
Non-basic Atoms : A ::= p(t1, . . . , tm)
Goals : G ::= B | A | G1, G2

Basic and nonbasic atoms are collectively called atoms. Goals made out of basic atoms only
are said to be basic goals. Goals with at least one non-basic atom are said to be nonbasic
goals. The binary operator “,” denotes conjunction and it is assumed to be associative with
neutral element true. Thus, a goal G is the same as goal (true, G), and it is also the same
as goal (G, true).
Clauses: C,C1, C2, . . . have the following syntax:

C ::= A← G

Derivation of Efficient Logic Programs 133

Given a clause C of the form: A ← G, the non-basic atom A is called the head of C and it
is denoted by hd(C), and the goal G is called the body of C and it is denoted by bd(C). A
clause A ← G where G is a basic goal, is called a unit clause. We write a unit clause of the
form: A ← true also as: A ←.
We say that C is a clause for a predicate p iff C is a clause of the form p(. . .) ← G.
Programs: P, P1, P2, . . . are sets of clauses.
In what follows we will feel free to use different meta-variables to denote our syntactic
expressions, and in particular, we will also denote non-basic atoms by H,H1, . . ., and goals
by K,K1,Body ,Body1, . . .

Given a program P , we consider the relation δP over pairs of predicates such that δP (p, q)
holds iff there exists in P a clause for p whose body contains an occurrence of q. Let δ+

P be
the transitive closure of δP . We say that p depends on q in P iff δ+

P (p, q) holds. We say that
a predicate p depends on a clause C in a program P iff either C is a clause for p or C is a
clause for a predicate q and p depends on q in P .

Terms, atoms, goals, clauses, and programs are collectively called expressions, ranged
over by e, e1, e2, . . . By vars(e) we denote the set of variables occurring in an expression
e. We say that X is a local variable of a goal G in a clause C : H ← G1, G,G2 iff X ∈
vars(G)−vars(H,G1, G2).

The application of a renaming substitution to an expression is also called a renaming of
variables. A renaming of variables can be applied to a clause whenever needed, because it
preserves the least Herbrand model semantics which we define below. Given a clause C, a
renamed apart clause C ′ is any clause obtained from C by a renaming of variables, so that
each variable of C ′ is a fresh new variable. (For a formal definition of this concept, see the
definition of standardized apart clause in [1, 28])

For any two unifiable terms t1 and t2, there exists at least one mgu ϑ which is relevant
(that is, each variable occurring in ϑ also occurs in vars(t1)∪vars(t2)) and idempotent (that
is, ϑϑ = ϑ) [1]. Without loss of generality, we assume that all mgu’s considered in this paper
are relevant and idempotent.

2.2 Declarative Semantics

In this section we extend the definition of least Herbrand model of definite logic programs [28]
to logic programs with equations and disequations between terms. We follow the approach
usually taken when defining the least D-model of a CLP program (see, for instance, [20]).
According to this approach, we consider a class of Herbrand models, called H-models, where
the predicates true, =, and �= have a fixed interpretation. In particular, the predicate =
is interpreted as the identity relation over the Herbrand universe and the predicate �= is
interpreted as the complement of the identity relation. Then we define the least Herbrand
model of a logic program with equations and disequations between terms as the least H-
model of the program.

The Herbrand base HB is the set of all ground nonbasic atoms. An H-interpretation is a
subset of HB. Given an H-interpretation I and a ground goal, or ground clause, or program
ϕ, the relation I |= ϕ, read as ϕ is true in I, is inductively defined as follows (as usual, by
I �|= ϕ we indicate that I |= ϕ does not hold):

(i) I |= true
(ii) for every ground term t, I |= t= t
(iii) for every pair of distinct ground terms t1 and t2, I |= t1 �= t2
(iv) for every nonbasic ground atom A, I |= A iff A ∈ I
(v) for every pair of ground goals G1 and G2, I |= G1, G2 iff I |= G1 and I |= G2

(vi) for every ground clause C, I |= C iff either I |= hd(C) or I �|= bd(C)
(vii) for every program P , I |= P iff for every ground instance C of a clause in P , I |= C.

134 Alberto Pettorossi et al.

As a consequence of the above definition, a ground basic goal is true in an H-interpretation
iff it is true in all H-interpretations. We say that a ground basic goal holds iff it is true in
all H-interpretations.

AnH-interpretation I is said to be an H-model of a program P iff I |= P . Since the model
intersection property holds for H-models, similarly to [20, 28], we can prove the following
important result.

Theorem 1 For any program P there exists an H-model of P which is the least (w.r.t. set
inclusion) H-model.

The least Herbrand model of a program P is defined as the least H-model of P and is denoted
by M(P).

2.3 Operational Semantics

We define the operational semantics of our programs by introducing, for each program P , a
relation G1

ϑ�−→P G2, where G1 and G2 are goals and ϑ is a substitution, defined as follows:

(1) (t1 = t2, G) ϑ�−→P Gϑ iff t1 and t2 are unifiable via an mgu ϑ

(2) (t1 �= t2, G) ε�−→P G iff t1 and t2 are not unifiable and
ε is the identity substitution

(3) (A,G) ϑ�−→P (bd(C), G)ϑ iff (i) A is a nonbasic atom,
(ii) C is a renamed apart clause in P, and
(iii) A and hd(C) are unifiable via an mgu ϑ.

A sequence G0
ϑ1�−→P · · · ϑn�−→P Gn, with n ≥ 0, is called a derivation using P . If Gn

is true then the derivation is said to be successful. If there exists a successful derivation
G0

ϑ1�−→P · · · ϑn�−→P true and ϑ is the substitution obtained by restricting the composition
ϑ1 . . . ϑn to the variables of G0, then we say that the goal G0 succeeds in P with answer
substitution ϑ.

When denoting derivations, we will feel free to omit their associated substitutions. In
particular, given two goals G1 and G2, we write G1 �−→P G2 iff there exists a substitution
ϑ such that G1

ϑ�−→P G2. We say that G2 is derived in one step from G1 (using P) iff
G1 �−→P G2 holds. In particular, if G2 is derived in one step from G1 according to Point (3)
of the operational semantics by using a clause C, then we say that G2 is derived in one step
from G1 using C. The relation �−→∗

P is the reflexive and transitive closure of �−→P . Given
two goals G1 and G2 such that G1 �−→∗

P G2 holds, we say that G2 is derived from G1 (using
P). We will feel free to omit the reference to program P when it is understood from the
context.

The operational semantics presented above can be viewed as an abstraction of the usual
Prolog semantics, because: (i) given a goal G1, in order to derive a goal G2 such that G1 �−→P

G2, we consider the leftmost atom in G1, (ii) the predicate = is interpreted as unifiability of
terms, and (iii) the predicate �= is interpreted as non-unifiability of terms. Similarly to [28],
we have the following relationship between the declarative and the operational semantics.

Theorem 2 For any program P and ground goal G, if G succeeds in P then M(P) |= G.

The converse of Theorem 2 does not hold. Indeed, consider the program P consisting of the
clause p(1) ← X �= 0 only. We have that M(P) |= p(1) because there exists a value for
X, namely 1, which is syntactically different from 0. However, p(1) does not succeed in P ,
because X and 0 are unifiable terms.

Derivation of Efficient Logic Programs 135

2.4 Deterministic Programs

Various notions of determinism have been proposed for logic programs in the literature (see,
for instance, [10,18,31,43]). They capture various properties such as: “the program succeeds
at most once”, or “the program succeeds exactly once”, or “the program will never backtrack
to find alternative solutions”.

Let us now present the definition of deterministic program used in this paper. This
definition is based on the operational semantics described in Section 2.3.

We first need the following notation. Given a program P , a clause C ∈ P , and two goals
(A0, G0) and (An, Gn), where A0 is a nonbasic atom, we write (A0, G0) ⇒C (An, Gn) iff
there exists a derivation (A0, G0) �−→P . . . �−→P (An, Gn), such that: (i) n>0, (ii) (A1, G1)
is derived in one step from (A0, G0) using C, (iii) for i = 1, . . . , n−1, Ai is a basic atom, and
(iv) either An is a nonbasic atom or (An, Gn) is the basic atom true. We write G0 ⇒∗

P Gn

iff there exist clauses C1, . . . , Cn in P such that G0 ⇒C1 . . . ⇒Cn
Gn.

Definition 1 (Determinism) A program P is deterministic for a nonbasic atom A iff for
each goal G such that A ⇒∗

P G, there exists at most one clause C such that G ⇒C G′ for
some goal G′.

We say that a program P is nondeterministic for a nonbasic atom A iff it is not the case
that P is deterministic for A, that is, there exists a goal G derivable from A, and there exist
at least two goals G1 and G2, and two distinct clauses C1 and C2 in P , such that G ⇒C1 G1

and G ⇒C2 G2.
According to Definition 1, the following program is deterministic for any atom of the

form non_zero(Xs,Ys) where Xs is a ground list.
1. non_zero([], [])←
2. non_zero([0|Xs],Ys) ← non_zero(Xs,Ys)
3. non_zero([X|Xs], [X|Ys])← X �=0,non_zero(Xs,Ys)

Notice that the above definition of a deterministic program for a nonbasic atom A allows
some search during the construction of a derivation starting from A. Indeed, there may be a
goal G derived from A such that from G we can derive in one step two or more new goals us-
ing distinct clauses. However, if the program is deterministic for A, after evaluating the basic
atoms occurring at leftmost positions in these new goals, at most one derivation can be con-
tinued and at most one successful derivation can be constructed. For instance, from the goal
non_zero([0, 0, 1],Ys) we can derive in one step two distinct goals: (i) non_zero([0, 1],Ys)
(using clause 2), and (ii) 0 �=0,non_zero([0, 1],Ys ′) (using clause 3). However, there exists
only one clause C (that is, clause 2) such that non_zero([0, 0, 1],Ys) ⇒C G′ for some goal
G′ (that is, non_zero([0, 1],Ys ′)).

3 Partial Deduction via Unfold/Fold Transformations

In this section we recall the rule-based approach to partial deduction. We also point out
some limitations of partial deduction [36, 41] and conjunctive partial deduction [8]. These
limitations motivate the introduction of the new, enhanced rules and strategies for program
specialization presented in Sections 4, 5, and 6.

3.1 Transformation Rules and Strategies for Partial Deduction

In the rule-based approach, partial deduction can be viewed as the construction of a sequence
P0, . . . , Pn of programs, called a transformation sequence, where P0 is the initial program
to be specialized, Pn is the final, specialized program, and for k = 0, . . . , n − 1, program
Pk+1 is derived from program Pk by by applying one of the following transformation rules
PD1–PD4.

136 Alberto Pettorossi et al.

Rule PD1 (Atomic Definition Introduction). We introduce a clause D, called atomic
definition clause, of the form

newp(X1, . . . , Xh) ← A

where (i) newp is a nonbasic predicate symbol not occurring in P0, . . . , Pk, (ii) A is a non-
basic atom whose predicate occurs in program P0, and (iii) {X1, . . . , Xh} = vars(A).
Program Pk+1 is the program Pk ∪ {D}.

We denote by Defsk the set of atomic definition clauses which have been introduced
by the definition introduction rule during the construction of the transformation sequence
P0, . . . , Pk. Thus, in particular, we have that Defs0 = ∅.
Rule PD2 (Definition Elimination). Let p be a predicate symbol. By definition elimi-
nation w.r.t. p we derive the program Pk+1 = {C ∈ Pk | p depends on C}.
Rule PD3 (Unfolding). Let C be a renamed apart clause of Pk of the form: H ←
G1, A,G2, where A is a nonbasic atom. Let C1, . . . , Cm, with m ≥ 0, be the clauses of
Pk such that, for i = 1, . . . , m, A is unifiable with the head of Ci via the mgu ϑi. By
unfolding C w.r.t. A, for i = 1, . . . , m, we derive the clause Di : (H ← G1, bd(Ci), G2)ϑi.
Program Pk+1 is the program (Pk − {C}) ∪ {D1, . . . , Dm}.
Rule PD4 (Atomic Folding). Let C be a renamed apart clause of Pk of the form: H ←
G1, Aϑ,G2, where: (i) A is a nonbasic atom, and (ii) ϑ is a substitution, and let D be an
atomic definition clause in Defsk of the form: N ← A. By folding C w.r.t. Aϑ using D we
derive the nonbasic atom Nϑ and we derive the clause E : H ← G1, Nϑ,G2.
Program Pk+1 is the program (Pk − {C}) ∪ {E}.

The partial deduction of a program P may be realized by applying the atomic definition
introduction, definition elimination, unfolding, and atomic folding rules, according to the so
called partial deduction strategy which we will describe below. Our partial deduction strategy
uses two subsidiary strategies: (1) an Unfold strategy, which derives new sets of clauses by
repeatedly applying the unfolding rule, and (2) a Define-Fold strategy, which introduces
new atomic definition clauses and it folds the clauses derived by the Unfold strategy. These
subsidiary strategies use an unfolding selection function and a generalization function, which
we now define. Let us first introduce the following notation: (i) NBAtoms is the set of all
nonbasic atoms, (ii) Clauses is the set of all clauses, (iii) Clauses∗ is the set of all finite
sequences of clauses, (iv) P(Clauses) is the powerset of Clauses, (v) a sequence of clauses is
denoted by C1, . . . , Cn, and (vi) the empty sequence of clauses is denoted by ().

An unfoldingselection function is a total function Select :Clauses∗×Clauses →NBAtoms ∪
{halt}, where halt is a symbol not occurring in NBAtoms. We assume that, for C1, . . . , Cn ∈
Clauses∗ and C ∈ Clauses, Select((C1, . . . , Cn), C) is a nonbasic atom in the body of C.

When applying the Unfold strategy the Select function is used as follows. During the
unfolding process starting from a set Cls of clauses, we consider a clause, say C, to be
unfolded, and the sequence of its ancestor clauses, that is, the sequence C1, . . . , Cn of clauses
such that: (i) C1 ∈ Cls, (ii) for k = 1, . . . , n−1, Ck+1 is derived by unfolding Ck, and (iii) C
is derived by unfolding Cn. Now, (i) if Select((C1, . . . , Cn), C) = A, where A is a nonbasic
atom in the body of C, then C is unfolded w.r.t. A, and (ii) if Select((C1, . . . , Cn), C) = halt
then C is not unfolded.

A generalization function is a function Gen : P(Clauses)× NBAtoms → Clauses which
is defined for any set Defs of atomic definition clauses and for any nonbasic atom A.
Gen(Defs, A) is either a clause in Defs or a clause of the form g(X1, . . . , Xh) ← GenA,
where: (i) {X1, . . . , Xh} = vars(GenA), (ii) A is an instance of GenA, and (iii) g is a new
predicate, that is, it occurs neither in P nor in Defs.

When applying the Define-Fold strategy the generalization function Gen is used as fol-
lows: when we want to fold a clause C w.r.t. a nonbasic atom A in its body, we consider
the set Defs of all atomic definition clauses introduced so far and we apply the folding

Derivation of Efficient Logic Programs 137

rule using Gen(Defs, A). This application of the folding rule is indeed possible because, by
construction, A is an instance of the body of Gen(Defs, A).

Partial Deduction Strategy

Input:A programP and a non-basic atomp(t1, . . . , th) w.r.t.which we want to specializeP .
Output: A program Ppd and a non-basic atom ppd(X1, . . . ,Xr), such that:(i) {X1, . . . ,Xr} =
vars(p(t1, . . . , th)), and (ii) for every ground substitution ϑ = {X1/u1, . . . , Xr/ur},

M(P) |= p(t1, . . . , th)ϑ iff M(Ppd) |= ppd(X1, . . . , Xr)ϑ.

Initialize: Let S be the clause ppd(X1, . . . , Xr) ← p(t1, . . . , th). Let Ancestors(S) be the
empty sequence of clauses.
TransfP := P ; Defs := {S}; Cls := {S};
while Cls �= ∅ do
(1) Unfold :

while there exists a clause C ∈ Cls with Select(Ancestors(C), C) �= halt do
Let Unf (C) = {E | E is derived by unfolding C w.r.t. Select(Ancestors(C), C)}.
Cls := (Cls − {C}) ∪Unf (C);
for each E ∈ Unf (C) let Ancestors(E) be the sequence Ancestors(C) followed by C

end-while;
(2) Define-Fold :

NewDefs := ∅;
while there exists a clause C ∈ Cls and there exists a non-basic atom A ∈ bd(C) which

has not been derived by folding do
Let G be the atomic definition clause Gen(Defs, A) and F be the clause derived by
folding C w.r.t. A using G.
Cls := (Cls − {C}) ∪ {F};
if G �∈ Defs then (Defs := Defs ∪ {G}; NewDefs := NewDefs ∪ {G})

end-while;
TransfP := TransfP ∪ Cls; Cls := NewDefs

end-while;
We derive the final program Ppd by applying the definition elimination rule and keeping only
the clauses of TransfP on which ppd depends.

A given unfolding selection function Select is said to be progressive iff for the empty sequence
() of clauses and for any clause C whose body contains at least one nonbasic atom, we have
that Select((), C) �= halt .

We have the following correctness result which is a straightforward corollary of Theorem 5
of Section 4.2.

Theorem 3 (Correctness of Partial Deduction w.r.t. the Declarative Seman-
tics) Let Select be a progressive unfolding selection function. Given a program P and a
nonbasic atom p(t1, . . . , th), if the partial deduction strategy using Select terminates with
output program Ppd and output atom ppd(X1, . . . , Xr), then for every ground substitution
ϑ = {X1/u1, . . . , Xr/ur}, M(P) |= p(t1, . . . , th)ϑ iff M(Ppd) |= ppd(X1, . . . , Xr)ϑ.

We say that an unfolding selection function Select is halting iff for any infinite sequence
C1, C2, . . . of clauses, there exists n ≥ 0 such that Select((C1, C2, . . . , Cn), Cn+1) = halt .

Given an infinite sequence A1, A2, . . . of nonbasic atoms, its image under the generaliza-
tion function Gen, is the sequence of sets of clauses defined as follows:

G1 = {newp(X1, . . . , Xn) ← A1}, where {X1, . . . , Xn} = vars(A1)
Gi+1 = Gi ∪ {Gen(Gi, Ai+1)} for i ≥ 1.

138 Alberto Pettorossi et al.

We say that Gen is stabilizing iff for any infinite sequence A1, A2, . . . of nonbasic atoms
whose image under Gen is G1, G2, . . . , there exists n > 0 such that Gk = Gn for all k ≥ n.

We have the following theorem whose proof is similar to the one in [25].

Theorem 4 (Termination of Partial Deduction) Let Select be a halting unfolding se-
lection function and Gen be a stabilizing generalization function. Then for any input program
P and non-basic atom p(t1, . . . , th), the partial deduction strategy using Select and Gen ter-
minates.

The following example shows that the unfolding rule (and thus, the partial deduction
strategy) is not correct w.r.t. the operational semantics.

Example 1 Let us consider the following program P1:
1. p ← X �=a, q(X)
2. q(b) ←

By unfolding clause 1 w.r.t. q(X) we derive the following program P2:
3. p ← b �=a
2. q(b) ←

We have that the goal p does not succeed in P1, while it succeeds in P2.

We will address this correctness issue in detail in Section 5, where we will present a set
of transformation rules which are correct w.r.t. the operational semantics for the class of
safe programs (see Theorem 6).

3.2 An Example of Partial Deduction: String Matching

In this section we illustrate the partial deduction strategy by means of a well-known program
specialization example which consists in specializing a general string matching program
w.r.t. a given pattern (see [11,13,44] for a similar example). Given a program for searching
a pattern in a string, and a fixed ground pattern p, we want to derive a new, specialized
program for searching the pattern p in a given string. Now we present a general program,
called Match, for searching a pattern P in a string S in {a, b}∗. Strings in {a, b}∗ are denoted
by lists of a’s and b’s. This program is deterministic for atoms of the form match(P, S), where
P and S are ground lists.

Program Match (initial, deterministic)
1. match(P, S) ← match1(P, S, P, S)
2. match1([], S, Y, Z) ←
3. match1([C|P], [C|S], Y, Z) ← match1(P ,S , Y, Z)
4. match1([a|P], [b|S], Y, [C|Z]) ← match1(Y,Z, Y, Z)
5. match1([b|P], [a|S], Y, [C|Z]) ← match1(Y,Z, Y, Z)

Let us assume that we want to specialize this programMatch w.r.t.the goal match([a, a, b], S),
that is, we want to derive a program which tells us whether or not the pattern [a, a, b] occurs
in the string S.

We apply our partial deduction strategy using the following unfolding selection function
DetU and generalization function Variant.
(1) The function DetU : Clauses∗ × Clauses → NBAtoms ∪ {halt} is defined as follows:
(i) DetU ((), C) = A if A is the leftmost nonbasic atom in the body of clause C,
(ii) DetU ((C1, C2, . . . , Cn), C) = A if n ≥ 1 and A is the leftmost nonbasic atom in the body
of C such that A is unifiable with at most one clause head in the program to be partially
evaluated, and
(iii) DetU ((C1, C2, . . . , Cn), C) = halt if there exists no nonbasic atom in the body of C
which is unifiable with at most one clause head in the program to be partially evaluated.

Derivation of Efficient Logic Programs 139

(2) The function Variant : P(Clauses)×NBAtoms → Clauses is defined as follows:
(i) Variant(Defs, A) is a clause C such that bd(C) is a variant of A, if in Defs there exists
any such clause C, and
(ii) Variant(Defs, A) is the clause newp(X1, . . . , Xh) ← A, where newp is a new predicate
symbol and {X1, . . . , Xh} = vars(A), otherwise.
The function DetU corresponds to the determinate unfolding rule considered in [13]. We
have that DetU is not halting and Variant is not stabilizing. Nevertheless, in our example,
as the reader may verify, the partial deduction strategy using DetU and Variant terminates
and generates the following specialized program:

Program Matchpd (specialized by partial deduction, deterministic)
6. matchpd(S) ← new1(S)
7. new1([a|S]) ← new2(S)
8. new1([b|S]) ← new1(S)
9. new2([a|S]) ← new3(S)

10. new2([b|S]) ← new1(S)
11. new3([b|S]) ←
12. new3([a|S]) ← new3(S)

The program Matchpd is deterministic for atoms of the form matchpd(S), where S is a
ground list, and it corresponds to a DFA in the sense that: (i) each predicate corresponds
to a state, (ii) each clause, except for clause 6 and 11, corresponds to a transition from the
state corresponding to the predicate of the head to the state corresponding to the predicate
of the body, (iii) each transition is labeled by the symbol (either a or b) occurring in the
head of the corresponding clause, (iv) by clause 6 we have that new1 is the initial state for
goals of the form matchpd(w), where w is any ground list representing a word in {a, b}∗, and
(v) clause 11 corresponds to a transition, labeled by b, to an unnamed final state where any
remaining portion of the input word is accepted.

Thus, via partial deduction we can derive a DFA from a deterministic string match-
ing program. The derived program corresponds to the Knuth-Morris-Pratt string matching
algorithm [22].

3.3 Some Limitations of Partial Deduction

The fact that the partial deduction strategy derives a DFA is a consequence of the fact that
the initial string matching program Match is rather sophisticated and, indeed, the correctness
proof of the program Match is not straightforward. Actually, the partial deduction strategy
does not derive a DFA if we consider, instead of the program Match, the following naive
initial program for string matching:

Program Naive_Match (initial, nondeterministic)
1. naive_match(P, S) ← append(X,R, S), append(L, P,X)
2. append([], Y, Y) ←
3. append([A|X], Y, [A|Z]) ← append(X,Y,Z)

This program is nondeterministic for atoms of the form naive_match(P, S), where P and
S are ground lists. The correctness of this naive program is straightforward because for a
given pattern P and a string S, Naive_Match tests whether or not P occurs in S by looking
in a nondeterministic way for two strings L and R such that S is the concatenation of L, P ,
and R in this order.

The reader may verify that the partial deduction strategy does not derive a DFA when
starting from the program Naive_Match. Indeed, if we specialize Naive_Match w.r.t. the
goal naive_match([a, a, b], S) by applying the partial deduction strategy using the unfolding

140 Alberto Pettorossi et al.

selection function DetU and the generalization function Variant, then we derive the following
program Naive_Matchpd which does not correspond to a DFA and it is nondeterministic:

Program Naive_Matchpd (specialized by partial deduction, nondeterministic)

4. naive_matchpd(S) ← new1(X,R, S), new2(L, X)
5. new1([], Y, Y) ←
6. new1([A|X], Y, [A|Z]) ← new1(X,Y,Z)
7. new2([], [a, a, b]) ←
8. new2([A|X], [A|Z]) ← new2(X,Z)

Indeed, this Naive_Matchpd program looks in a nondeterministic way for two strings L and
R such that S is the concatenation of L, [a, a, b], and R. If the pattern [a, a, b] is not found
within the string S at a given position, then the search for [a, a, b] is restarted after a shift
of one character to the right of that position.

From the program Naive_Match we can derive a specialized program which is much
more efficient than Naive_Matchpd by applying conjunctive partial deduction, instead of
partial deduction. Conjunctive partial deduction, viewed as a sequence of applications of
transformation rules, enhances partial deduction because: (i) one may introduce a definition
clause whose body is a conjunction of atoms, instead of one atom only (see Rule PD1), and
(ii) one may fold a clause w.r.t. a conjunction of atoms in its body, instead of one atom only
(see Rule PD4). By applying conjunctive partial deduction one may avoid intermediate data
structures, such as the list X constructed by using clause 1 of program Naive_Match. Indeed,
by using the ECCE system for conjunctive partial deduction [24], from the Naive_Match
program we derive the following specialized program:

Program Naive_Matchcpd (specialized by conjunctive partial deduction,
nondeterministic)

9. naive_matchcpd([X,Y,Z|S]) ← new1(X,Y,Z, S)
10. new1(a, a, b, S) ←
11. new1(X,Y,Z, [C|S]) ← new1(Y,Z,C, S)

This Naive_Matchcpd program searches for the pattern [a, a, b] in the input string by looking
at the first three elements of that string. If they are a, a, and b, in this order, then the search
succeeds, otherwise the search for the pattern continues in the tail of the string. Although
this Naive_Matchcpd program is much more efficient than the initial Naive_Match program,
it does not correspond to a DFA because, when searching for the pattern [a, a, b], it looks at
a prefix of length 3 of the input string, instead of one symbol only.

The failure of partial deduction and conjunctive partial deduction to derive a DFA when
starting from the Naive_Match program, is due to some limitations which can be overcome
by using the enhanced transformation rules we will present in the next section. By applying
these enhanced rules we can define a new predicate by introducing several clauses whose
bodies are non-atomic goals, while by applying the rules for partial deduction or conjunctive
partial deduction, a new predicate can be defined by introducing one clause only. By folding
using definition clauses of the enhanced form, we can derive specialized programs where non-
determinism is reduced and intermediate data structures are avoided. Among our enhanced
rules we also have the so called case split rule which, given a clause, produces two mutually
exclusive instances of that clause by introducing negated equations. The application of this
rule allows subsequent folding steps which reduce nondeterminism.

By applying the enhanced transformation rules according to the Determinization Strategy
we will present in Section 6, one can automatically specialize the nondeterministic program
Naive_Match w.r.t. the goal naive_match([a, a, b], S) thereby deriving the following deter-
ministic program (this derivation is not presented here and it is similar to the one presented
in Section 7.1):

Derivation of Efficient Logic Programs 141

Program Naive_Matchs (specialized by Determinization, deterministic)
12. naive_matchs(S) ← new1(S)
13. new1([a|S]) ← new2(S)
14. new1([C|S]) ← C �=a,new1(S)
15. new2([a|S]) ← new3(S)
16. new2([C|S]) ← C �=a,new1(S)
17. new3([b|S]) ← new4(S)
18. new3([a|S]) ← new3(S)
19. new3([C|S]) ← C �=b, C �=a,new1(S)
20. new4(S) ←

The program Naive_Matchs corresponds in a straightforward way to a DFA. Moreover,
since the clauses of Naive_Matchs are pairwise mutually exclusive, the disequations in their
bodies can be dropped in favor of cuts (or equivalently, if-then-else constructs) as follows:

Program Naive_Matchcut (specialized, with cuts)
21. naive_matchs(S) ← new1(S)
22. new1([a|S]) ←!, new2(S)
23. new1([C|S]) ← new1(S)
24. new2([a|S]) ←!, new3(S)
25. new2([C|S]) ← new1(S)
26. new3([b|S]) ←!, new4(S)
27. new3([a|S]) ←!, new3(S)
28. new3([C|S]) ← new1(S)
29. new4(S) ←

Computer experiments confirm that the final Naive_Matchcut program is indeed more effi-
cient than the Naive_Match, Naive_Matchpd, and Naive_Matchcpd programs. In Section 7
we will present more experimental results which demonstrate that the specialized programs
derived by our technique are more efficient than those derived by partial deduction or con-
junctive partial deduction.

4 Transformation Rules for Logic Programs with Equations
and Disequations between Terms

In this section we present the program transformation rules which we use for program special-
ization. These rules extend the unfold/fold rules considered in [14, 40, 46] to logic programs
with atoms which denote equations and disequations between terms. The transformation
rules we present in this section enhance in several respects the rules PD1-PD4 for partial
deduction which we have considered in Section 3. In particular, we consider a definition
introduction rule (see Rule 1) which allows the introduction of new predicates defined by
several clauses whose bodies are nonatomic goals, while by Rule PD1 a new predicate can be
defined by introducing one clause whose body is an atomic goal. We also consider a folding
rule (see Rule 4) by which we can fold several clauses at a time, while by Rule PD4 we
can fold one clause only. In addition, we consider the subsumption rule and the following
transformation rules for introducing and eliminating equations and disequations: (i) head
generalization, (ii) case split, (iii) equation elimination, and (iv) disequation replacement.
Our rules preserve the least Herbrand model as indicated in Theorem 5 below.

4.1 Transformation Rules

Similarly to Section 3, the process of program transformation is viewed as a transformation
sequence constructed by applying some transformation rules. However, as already mentioned,

142 Alberto Pettorossi et al.

in this section we consider an enhanced set of transformation rules. A transformation se-
quence P0, . . . , Pn is constructed from a given initial program P0 by applications of the
transformation rules 1–9 given below, as follows. For k = 0, . . . , n − 1, program Pk+1 is
derived from program Pk by: (i) selecting a (possibly empty) subset γ1 of clauses of Pk, (ii)
deriving a set γ2 of clauses by applying a transformation rule to γ1, and (iii) replacing γ1

by γ2 in Pk.
Notice that Rules 2 and 3 are in fact equal to Rules PD2 and PD3, respectively. However,

we rewrite them below for the reader’s convenience.

Rule 1 (Definition Introduction) We introduce m (≥ 1) new clauses, called definition
clauses, of the form:⎧⎨⎩

D1. newp(X1, . . . , Xh) ← Body1

· · ·
Dm. newp(X1, . . . , Xh) ← Bodym

where: (i) newp is a nonbasic predicate symbol not occurring in P0, . . . , Pk, (ii) the variables
X1, . . . , Xh are all distinct and for all i ∈ {1, . . . , h} there exists j ∈ {1, . . . , m} such that
Xi occurs in the goal Bodyj , (iii) for all j ∈ {1, . . . , m}, every nonbasic predicate occurring
in Bodyj also occurs in P0, and (iv) for all j ∈ {1, . . . , m}, there exists at least one nonbasic
atom in Bodyj .
Program Pk+1 is the program Pk ∪ {D1, . . . , Dm}.

As in Section 3, we denote by Defsk the set of definition clauses introduced by the defi-
nition introduction rule during the construction of the transformation sequence P0, . . . , Pk.
In particular, we have that Defs0 = ∅.
Rule 2 (Definition Elimination) Let p be a predicate symbol. By definition elimination
w.r.t. p we derive the program Pk+1 = {C ∈ Pk | p depends on C}.
Rule 3 (Unfolding) Let C be a renamed apart clause of Pk of the form: H ← G1, A,G2,
where A is a nonbasic atom. Let C1, . . . , Cm, with m ≥ 0, be the clauses of Pk such that,
for i = 1, . . . , m, A is unifiable with the head of Ci via the mgu ϑi. By unfolding C w.r.t.
A, for i = 1, . . . , m, we derive the clause Di : (H ← G1, bd(Ci), G2)ϑi.
Program Pk+1 is the program (Pk − {C}) ∪ {D1, . . . , Dm}.

Notice that an application of the unfolding rule to clause C amounts to the deletion of C
iff m=0. Sometimes in the literature this particular instance of the unfolding rule is treated
as an extra rule.

Rule 4 (Folding) Let⎧⎨⎩
C1. H ← G1,Body1ϑ,G2

· · ·
Cm. H ← G1,Bodymϑ,G2

be renamed clauses of Pk, for a suitable substitution ϑ, and let⎧⎨⎩
D1. newp(X1, . . . , Xh) ← Body1

· · ·
Dm. newp(X1, . . . , Xh) ← Bodym

be all clauses in Defsk which have newp as head predicate. Suppose that for i = 1, . . . , m,
the following condition holds: for every variable X occurring in the goal Body i and not
in {X1, . . . , Xh}, we have that: (i) Xϑ is a variable which does not occur in (H,G1, G2),
and (ii) Xϑ does not occur in Y ϑ, for any variable Y occurring in Bodyi and different
from X. By folding C1, . . . , Cm using D1, . . . , Dm we derive the single clause E: H ←
G1,newp(X1, . . . , Xh)ϑ,G2.
Program Pk+1 is the program (Pk − {C1, . . . , Cm}) ∪ {E}.

Derivation of Efficient Logic Programs 143

For instance, the clauses C1: p(X) ← q(t(X), Y), r(Y) and C2: p(X) ← s(X), r(Y) can
be folded (by considering the substitution ϑ = {U/X, V/Y }) using the two definition clauses
D1: a(U, V) ← q(t(U), V) and D2: a(U, V) ← s(U), and we replace C1 and C2 by the clause
E: p(X) ← a(X,Y), r(Y).

Rule 5 (Subsumption) (i) Given a substitution ϑ, we say that a clause H ← G1 subsumes
a clause (H ← G1, G2)ϑ.
Program Pk+1 is derived from program Pk by deleting a clause which is subsumed by another
clause in Pk.

Rule 6 (Head Generalization) Let C be a clause of the form: H{X/t} ← Body in Pk,
where {X/t} is a substitution such that X occurs in H and X does not occur in C. By head
generalization, we derive the clause GenC : H ← X = t,Body .
Program Pk+1 is the program (Pk − {C}) ∪ {GenC}.

Rule 6 is a particular case of the rule of generalization + equality introduction considered,
for instance, in [38].

Rule 7 (Case Split) Let C be a clause in Pk of the form: H ← Body . By case split of C
w.r.t. the binding X/t, where X does not occur in t, we derive the following two clauses:

C1. (H ← Body){X/t}
C2. H ← X �= t,Body .

Program Pk+1 is the program (Pk − {C}) ∪ {C1, C2}.
In this Rule 7 we do not assume that X occurs in C. However, in the Determinization

Strategy of Section 6, we will always apply the case split rule to a clause C : H ← Body
w.r.t. a binding X/t where X occurs in H. This use of the case split rule will be suffi-
cient to derive mutually exclusive clauses. Indeed, according to our operational semantics, if
G �−→Pk+1 G1 using clause C1 and X occurs in H, then no G2 exists such that G �−→Pk+1 G2

using clause C2. The same holds by interchanging C1 and C2. We will return to this property
in Definitions 8 (Semideterminism) and 12 (Mutual Exclusion) below.

Rule 8 (Equation Elimination) Let C1 be a clause in Pk of the form:
C1. H ← G1, t1 = t2, G2

If t1 and t2 are unifiable via the most general unifier ϑ, then by equation elimination we
derive the following clause:

C2. (H ← G1, G2)ϑ
Program Pk+1 is the program (Pk − {C1}) ∪ {C2}.
If t1 and t2 are not unifiable then by equation elimination we derive program Pk+1 which is
Pk − {C1}.
Rule 9 (Disequation Replacement) Let C be a clause in program Pk. Program Pk+1 is
derived from Pk by either removing C or replacing C as we now indicate:

9.1 if C is of the form: H ← G1, t1 �= t2, G2 and t1 and t2 are not unifiable, then C is
replaced by H ← G1, G2

9.2 if C is of the form: H ← G1, f(t1, . . . , tm) �= f(u1, . . . , um), G2, then C is replaced by
the following m (≥ 0) clauses: H ← G1, t1 �=u1, G2, . . . , H ← G1, tm �=um, G2

9.3 if C is of the form: H ← G1, X �=X,G2, then C is removed from Pk

9.4 if C is of the form: H ← G1, t �=X,G2, then C is replaced by H ← G1, X �= t, G2

9.5 if C is of the form: H ← G1, X �= t1, G2, X �= t2, G3 and there exists a substitution ρ
which is a bijective mapping from the set of the local variables of X �= t1 in C onto
the set of the local variables of X �= t2 in C such that t1ρ = t2, then C is replaced by
H ← G1, X �= t1, G2, G3.

In particular, by Rule 9.5, if a disequation occurs twice in the body of a clause, then we
can remove the rightmost occurrence.

144 Alberto Pettorossi et al.

4.2 Correctness of the Transformation Rules w.r.t. the Declarative Semantics

In this section we show that, under suitable hypotheses, our transformation rules preserve
the declarative semantics presented in Section 2.2. In that sense we also say that our trans-
formation rules are correct w.r.t. the given declarative semantics. The following correctness
theorem extends similar results holding for logic programs [14, 40, 46] to the case of logic
programs with equations and disequations.

Theorem 5 (Correctness of the Rules w.r.t. the Declarative Semantics) Let P0,
. . . , Pn be a transformation sequence constructed by using the transformation rules 1–9 and
let p be a nonbasic predicate in Pn. Let us assume that :

1. if the folding rule is applied for the derivation of a clause C in program Pk+1 from clauses
C1, . . . , Cm in program Pk using clauses D1, . . . , Dm in Defsk , with 0≤k<n,
then for every i ∈ {1, . . . , m} there exists j ∈ {1, . . . , n−1} such that Di occurs in Pj

and Pj+1 is derived from Pj by unfolding Di;
2. during the transformation sequence P0, . . . , Pn the definition elimination rule either is

never applied or it is applied w.r.t. predicate p once only, in the last step, that is, when
deriving Pn from Pn−1.

Then, for every ground atom A with predicate p, we have that M(P0 ∪ Defsn) |= A iff
M(Pn) |= A.

Proof : It is a simple extension of a similar result presented in [14] for the case where we use
the unfolding, folding, and generalization + equality introduction rules. The proof technique
used in [14] can be adapted to prove also the correctness of our extended set of rules. ��
In Example 1 of Section 3 we have shown that the unfolding rule may not preserve the
operational semantics. The following examples show that also other transformation rules
may not preserve the operational semantics.

Example 2 Let us consider the following program P1:
1. p(X) ← q(X), X �=a
2. q(X) ←
3. q(X) ← X =b

By Rule 5 we may delete clause 3 which is subsumed by clause 2 and we derive a new
program P2. Now, we have that p(X) succeeds in P1, while it does not succeed in P2.

Example 3 Let us consider the following program P3:
1. p(X) ←

By the case split rule we may replace clause 1 by the two clauses:
2. p(a) ←
3. p(X) ← X �=a

and we derive a new program P4. The goal p(X), X = b succeeds in P3, while it does not
succeed in P4.

Example 4 Let us consider the following program P5:
1. p ← X �=a, X =b

By Rule 8 we may replace clause 1 by:
2. p ← b �=a

and we derive a new program P6. The goal p does not succeed in P5, while it succeeds in P6.

Derivation of Efficient Logic Programs 145

Finally, let us consider the following two operations on the body of a clause: (i) removal
of a duplicate atom, and (ii) reordering of atoms. The following examples show that these
two operations, which preserve the declarative semantics, may not preserve the operational
semantics. Notice, however, that the removal of a duplicate atom and the reordering of atoms
cannot be accomplished by the transformation rules listed in Section 4, except for the special
case considered at Point 9.5 of the disequation replacement rule.

Example 5 Let us consider the program P7:
1. p ← q(X,Y), q(X,Y), X �=Y
2. q(X, b) ←
3. q(a, Y) ←

and the program P8 obtained from P7 by replacing clause 1 by the following clause:
4. p ← q(X,Y), X �=Y

The goal p succeeds in P7, while it does not succeed in P8. Indeed, (i) for program P7 we
have that: p �−→P7 q(X,Y), q(X,Y), X �=Y �−→P7 q(X, b), X �=b �−→P7 a �=b �−→P7 true,
and (ii) for program P8 we have that: either p �−→P8 X �=b or p �−→P8 a �=Y . In Case (ii),
since X and Y are unifiable with b and a, respectively, we have that p �−→∗

P8
true does not

hold.

Example 6 Let us consider the program P9:
1. p ← q(X), r(X)
2. q(a) ←
3. r(X) ← X �=b

and the program P10 obtained from P9 by replacing clause 1 by the following clause:
4. p ← r(X), q(X)

The goal p succeeds in P9, while it does not succeed in P10.

In the next section we will introduce a class of programs and a class of goals for which our
transformation rules preserve both the declarative semantics and the operational semantics.
In order to do so, we associate a mode with every predicate. A mode of a predicate specifies
the input arguments of that predicate, and we assume that whenever the predicate is called,
its input arguments are bound to ground terms. We will see that, if some suitable conditions
are satisfied, compliance to modes guarantees the preservation of the operational semantics.
This fact is illustrated by the above Examples 2 and 3, and indeed, in each of them, if we
restrict ourselves to calls of the predicate p with ground arguments, then the initial program
and the derived program have the same operational semantics.

Notice, however, that the incorrectness of the transformation of Example 4 does not
depend on the modes. Thus, in order to ensure correctness w.r.t. the operational semantics
we have to rule out clauses such as clause 1 of program P5. Indeed, as we will see in the
next section, the clauses we will consider satisfy the following condition: each variable which
occurs in a disequation either occurs in an input argument of the head predicate or it is a
local variable of the disequation.

5 Program Transformations based on Modes

Modes provide information about the directionality of predicates, by specifying whether an
argument should be used as input or output (see, for instance, [32, 49]). Mode information
is very useful for specifying and verifying logic programs [2, 10] and it is used in existing
compilers, such as Ciao and Mercury, to generate very efficient code [19, 45]. Mode infor-
mation has also been used in the context of program transformation to provide sufficient
conditions which ensure that reorderings of atoms in the body of a clause preserve program
termination [5].

146 Alberto Pettorossi et al.

In this paper we use mode information for: (i) specifying classes of programs and goals
w.r.t. which the transformation rules we have presented in Section 4.1 preserve the opera-
tional semantics (see Section 2.3), and (ii) designing our strategy for specializing programs
and reducing nondeterminism.

5.1 Modes

A mode for a nonbasic predicate p of arity h (≥ 0) is an expression of the form p(m1, . . . , mh),
where for i = 1, . . . , h, mi is either + (denoting any ground term) or ? (denoting any term).
In particular, if h=0, then p has a unique mode which is p itself. Given an atom p(t1, . . . , th)
and a mode p(m1, . . . , mh),
(1) for i = 1, . . . , h, the term ti is said to be an input argument of p iff mi is +, and
(2) a variable of p(t1, . . . , th) with an occurrence in an input argument of p, is said to be an
input variable of p(t1, . . . , th).

A mode for a program P is a set of modes for nonbasic predicates containing exactly one
mode for every distinct, nonbasic predicate p occurring in P .

Notice that a mode for a program P may or may not contain modes for nonbasic pred-
icates which do not occur in P . Thus, if M is a mode for a program P1 and, by applying
a transformation rule, from P1 we derive a new program P2 where all occurrences of a
predicate have been eliminated, then M is a mode also for P2. The following rules may
eliminate occurrences of predicates: definition elimination, unfolding, folding, subsumption,
disequation replacement (case 9.5). Clearly, if from P1 we derive P2 by applying the defini-
tion introduction rule, then in order to obtain a mode for P2 we should add to M a mode
for the newly introduced predicate (unless it is already in M).

Example 7 Given the program P :
p(0, 1) ←
p(0, Y) ← q(Y)

the set M1 = {p(+, ?), q(?)} is a mode for P . M2 = {p(+, ?), q(+), r(+)} is a different mode
for P .

Definition 2 Let M be a mode for a program P and p a nonbasic predicate. We say that
an atom p(t1, . . . , th) satisfies the mode M iff (1) a mode for p belongs to M and (2) for
i = 1, . . . , h, if the argument ti is an input argument of p according to M , then ti is a ground
term. In particular, when h=0, we have that p satisfies M iff p ∈M .
The program P satisfies the mode M iff for each non-basic atom A0 which satisfies M , and
for each non-basic atom A and goal G such that A0 �−→∗

P (A,G), we have that A satisfies M .

With reference to Example 7 above, program P satisfies mode M1, but it does not satisfy
mode M2.

In general, the property that a program satisfies a mode is undecidable. Two approaches
are usually followed for verifying this property: (i) the first one uses abstract interpretation
methods (see, for instance, [9, 32]) which always terminate, but may return a don’t know
answer, and (ii) the second one checks suitable syntactic properties of the program at hand,
such as well-modedness [2], which imply that the mode is satisfied.

Our technique is independent of any specific method used for verifying that a program
satisfies a mode. However, as the reader may verify, all programs presented in the examples
of Section 7 are well-moded and, thus, they satisfy the given modes.

5.2 Correctness of the Transformation Rules w.r.t. the Operational Semantics

Now we introduce a class of programs, called safe programs, and we prove that if the
transformation rules are applied to a safe program and suitable restrictions hold, then the
given program and the derived program are equivalent w.r.t. the operational semantics.

Derivation of Efficient Logic Programs 147

Definition 3 (Safe Programs) Let M be a mode for a program P . We say that a clause
C in P is safe w.r.t. M iff for each disequation t1 �= t2 in the body of C, we have that: for
each variable X occurring in t1 �= t2 either X is an input variable of hd(C) or X is a local
variable of t1 �= t2 in C. Program P is safe w.r.t. M iff all its clauses are safe w.r.t. M .

For instance, let us consider the mode M = {p(+), q(?)}. Clause p(X) ← X �= f(Y) is safe
w.r.t. M and clause p(X) ← X �=f(Y), q(Y) is not safe w.r.t. M because Y occurs both in
f(Y) and in q(Y).

When mentioning the safety property w.r.t. a given mode M , we feel free to omit the
reference to M , if it is irrelevant or understood from the context.

In order to get our desired correctness result (see Theorem 6 below), we need to restrict
the use of our transformation rules as indicated in Definitions 4–7 below. In particular,
these restrictions ensure that, by applying the transformation rules, program safety and
mode satisfaction are preserved (see Propositions 3 and 4 in [35, Appendix A]).

Definition 4 (Safe Unfolding) Let Pk be a program and M be a mode for Pk. Let us
consider an application of the unfolding rule (see Rule 3 in Section 4.1) whereby from the
following clause of Pk:

H ← G1, A,G2

we derive the clauses:⎧⎨⎩
D1. (H ← G1, bd(C1), G2)ϑ1

· · ·
Dm. (H ← G1, bd(Cm), G2)ϑm

where C1, . . . , Cm are the clauses in Pk such that, for i ∈ {1, . . . , m}, A is unifiable with the
head of Ci via the mgu ϑi.
We say that this application of the unfolding rule is safe w.r.t. mode M iff for all i = 1, . . . , m,
for all disequations d in bd(Ci), and for all variables X occurring in dϑi, we have that either
X is an input variable of Hϑi or X is a local variable of d in Ci.

To see that unrestricted applications of the unfolding rule may not preserve safety, let
us consider the following program:

1. p ← q(X), r(X)
2. q(1) ←
3. r(X) ← X �=0

and the mode M = {p, q(?), r(+)} for it. By unfolding clause 1 w.r.t. the atom r(X) we
derive the clause:

4. p ← q(X), X �=0
This clause is not safe w.r.t. M because X does not occur in its head.

Definition 5 (Safe Folding) Let us consider a program Pk and a mode M for Pk. Let us
also consider an application of the folding rule (see Rule 4 in Section 4.1) whereby from the
following clauses in Pk:⎧⎨⎩

C1. H ← G1, (A1,K1)ϑ,G2

· · ·
Cm. H ← G1, (Am,Km)ϑ,G2

and the following definition clauses in Defsk :⎧⎨⎩
D1. newp(X1, . . . , Xh) ← A1,K1

· · ·
Dm. newp(X1, . . . , Xh) ← Am,Km

we derive the new clause:
H ← G1,newp(X1, . . . , Xh)ϑ,G2

148 Alberto Pettorossi et al.

We say that this application of the folding rule is safe w.r.t. mode M iff the following
Property Σ holds:
(Property Σ) Each input variable of newp(X1, . . . , Xh)ϑ is also an input variable of at least
one of the non-basic atoms occurring in (H,G1, A1ϑ, . . . , Amϑ).

Unrestricted applications of the folding rule may not preserve modes. Indeed, let us
consider the following initial program:

1. p ← q(X)
2. q(1) ←

Suppose that first we introduce the definition clause:
3. new(X) ← q(X)

and then we apply the clause split rule, thereby deriving:
4. new(0) ← q(0)
5. new(X) ← X �=0, q(X)

The program made out of clauses 1, 2, 4, and 5 satisfies the mode M = {p, q(?), new(+)}.
By folding clause 1 using clause 3 we derive:

6. p ← new(X)
This application of the folding rule is not safe and the program we have derived, consisting
of clauses 2, 4, 5, and 6, does not satisfy M .

Definition 6 (Safe Head Generalization) Let us consider a program Pk and a mode M
for Pk. We say that an application of the head generalization rule (see Rule 6 in Section 4.1)
to a clause of Pk is safe iff X is not an input variable w.r.t. M .

The restrictions considered in Definition 6 are needed to preserve safety. For instance, the
clause p(t(X)) ← X �=0 is safe w.r.t. the mode M = {p(+)}, while p(Y) ← Y = t(X), X �=0
is not.

Definition 7 (Safe Case Split) Let us consider a program Pk and a mode M for Pk. Let
us consider also an application of the case split rule (see Rule 7 in Section 4.1) whereby from
a clause C in Pk of the form: H ← Body we derive the following two clauses:

C1. (H ← Body){X/t}
C2. H ← X �= t,Body .

We say that this application of the case split rule is safe w.r.t. mode M iff X is an input
variable of H, X does not occur in t, and for all variables Y ∈ vars(t), either Y is an input
variable of H or Y does not occur in C.

When applying the safe case split rule, X occurs in H and thus, given a goal G, it is
not the case that for some goals G1 and G2, we have both G �−→ G1 using clause C1 and
G �−→ G2 using clause C2. In Definition 12 below, we will formalize this property by saying
that the clauses C1 and C2 are mutually exclusive.

Similarly to the unfolding and head generalization rules, the unrestricted use of the case
split rule may not preserve safety. For instance, from the clause p(X) ← which is safe w.r.t.
the mode M = {p(?)}, we may derive the two clauses p(0) ← and p(X) ← X �=0, and this
last clause is not safe w.r.t. M .

We have shown in Section 4.1 (see Example 6), that the reordering of atoms in the body
of a clause may not preserve the operational semantics. Now we prove that a particular
reordering of atoms, called disequation promotion, which consists in moving to the left the
disequations occurring in the body of a safe clause, preserves the operational semantics.
Disequation promotion (not included, for reason of simplicity, among the transformation
rules) allows us to rewrite the body of a safe clause so that every disequation occurs to the

Derivation of Efficient Logic Programs 149

left of every atom different from a disequation thereby deriving the normal form of that
clause (see Section 6). The use of normal forms will simplify the proof of Theorem 6 below
and the presentation of the Determinization Strategy in Section 6.

Proposition 1 (Correctness of Disequation Promotion) Let M be a mode for a pro-
gram P1. Let us assume that P1 is safe w.r.t. M and P1 satisfies M . Let C1: H ← G1, G2,
t1 �= t2, G3 be a clause in P1. Let P2 be the program derived from P1 by replacing clause C1

by clause C2: H ← G1, t1 �= t2, G2, G3. Then: (i) P2 is safe w.r.t. M , (ii) P2 satisfies M ,
and (iii) for each non-basic atom A which satisfies mode M , A succeeds in P1 iff A succeeds
in P2.
Proof : Point (i) follows from the fact that safety does not depend on the position of the
disequation in a clause. Moreover, the evaluation of goal G2 in program P1 according to our
operational semantics, does not bind any variable in t1 �= t2, and thus, we get Point (ii).
Point (iii) is a consequence of Points (i) and (ii) and the fact that the evaluation of t1 �= t2
does not bind any variable in the goals G2 and G3. ��

The above proposition does not hold if we interchange clause C1 and C2. Consider, in
fact, the following clause which is safe w.r.t. mode M = {p(+), q(+)}:

C3. p(X) ← X �=Y, q(Z)
This clause satisfies M because for all derivations starting from a ground instance p(t) of
p(X) the atom t �=Y does not succeed. In contrast, if we use the clause C4: p(X) ← q(Z), X �=
Y , we have that in the derivation starting from p(t), the variable Z is not bound to a ground
term and thus, clause C4 does not satisfy the mode M which has the element q(+).

In Theorem 6 below we will show that if we apply our transformation rules and their
safe versions in a restricted way, then a program P which satisfies a mode M and is safe
w.r.t. M , is transformed into a new program, say Q, which satisfies M and is safe w.r.t. M .
Moreover, the programs P and Q have the same operational semantics.

Theorem 6 (Correctness of the Rules w.r.t. the Operational Semantics) Let P0,
. . . , Pn be a transformation sequence constructed by using the transformation rules 1–9 and
let p be a non-basic predicate in Pn. Let M be a mode for P0∪Defsn such that: (i) P0∪Defsn
is safe w.r.t. M , (ii) P0 ∪Defsn satisfies M , and (iii) the applications of the unfolding, fold-
ing, head generalization, and case split rules during the construction of P0, . . . , Pn are all
safe w.r.t. M . Suppose also that Conditions 5 and 5 of Theorem 5 hold. Then: (i) Pn is safe
w.r.t. M , (ii) Pn satisfies M , and (iii) for each atom A which has predicate p and satisfies
mode M , A succeeds in P0 ∪Defsn iff A succeeds in Pn.
Proof : See [35, Appendix A]. ��

5.3 Semideterministic Programs

In this section we introduce the concept of semideterminism which characterizes the class
of programs which can be obtained by using the Determinization Strategy of Section 6.
(The reader should not confuse the notion of semideterminism presented here with the one
considered in [18].)

We have already noticed that if a program P is deterministic for an atom A according to
Definition 1, then there is at most one successful derivation starting from A, and A succeeds
in P with at most one answer substitution. Thus, if an atom succeeds in a program with
more than one answer substitution, and none of these substitutions is more general than
another, then there is no chance to transform that program into a new program which is
deterministic for that atom.

For instance, let us consider the following generalization of the problem of Sections 3.2
and 3.3: Given a pattern P and a string S we want to compute the position, say N , of
an occurrence of P in S, that is, we want to find two strings L and R such that: (i) S is

150 Alberto Pettorossi et al.

the concatenation of L, P , and R, and (ii) the length of L is N . The following program
Match_Pos computes N for any given P and S:

Program Match_Pos (initial, nondeterministic)
1. match_pos(P, S,N) ← append(Y,R, S), append(L, P, Y), length(L, N)
2. length([], 0) ←
3. length([H|T], s(N)) ← length(T,N)
4. append([], Y, Y) ←
5. append([A|X], Y, [A|Z]) ← append(X,Y,Z)

The Match_Pos program is nondeterministic for atoms of the form match_pos(P, S,N)
where P and S are ground lists, and it computes one answer substitution for each occurrence
of P in S.

Suppose that we want to specialize Match_Pos w.r.t. the atom match_pos([a, a, b], S,N).
Thus, we want to derive a new, specialized program Match_Poss and a new binary predicate
match_poss . This new program should be able to compute multiple answer substitutions for
a goal. For instance, for the atom match_poss([a, a, b, a, a, b], N) the program Match_Poss
should compute the two substitutions {N/0} and {N/s(s(s(0)))} and, thus, Match_Poss
cannot be deterministic for the atom match_poss([a, a, b, a, a, b], N).

Now, in order to deal with programs which may return multiple answer substitutions,
we introduce the notion of semideterminism, which is weaker than that of determinism.
Informally, we may say that a semideterministic program has the minimum amount of non-
determinism which is needed to compute multiple answer substitutions. In Section 6 we
will prove that the Determinization Strategy, if it terminates, derives a semideterministic
program.

Definition 8 (Semideterminism) A program P is semideterministic for a nonbasic atom
A iff for each goal G such that A⇒∗

P G, there exists at most one clause C such that G⇒C G′

for some goal G′ different from true.
Given a mode M for a program P , we say that P is semideterministic w.r.t. M iff P is
semideterministic for each non-basic atom which satisfies M .

In Section 7.1 below we will show that by applying the Determinization Strategy, from
Match_Poss we derive the following specialized program Match_Poss which is semideter-
ministic for atoms of the form match_poss(S,N), where S is a ground list.

Program Match_Poss (specialized, semideterministic)
9. match_poss(S,N) ← new1(S,N)

20. new1([a|S],M) ← new2(S,M)
21. new1([C|S], s(N)) ← C �=a, new1(S,N)
32. new2([a|S],M) ← new3(S,M)
33. new2([C|S], s(s(N))) ← C �=a, new1(S,N)
46. new3([a|S], s(M)) ← new3(R,S)
47. new3([b|S],M) ← new4(R,S)
48. new3([C|S], s(s(s(N)))) ← C �=a, C �=b, new1(S,N)
49. new4(S, 0) ←
55. new4([a|S], s(s(s(M)))) ← new2(S,M)
56. new4([C|S], s(s(s(s(N))))) ← C �=a, new1(S,N)

Now we give a simple sufficient condition which ensures semideterminism. It is based on the
concept of mutually exclusive clauses which we introduce below. We need some preliminary
definitions.

Definition 9 (Satisfiability of Disequationsw.r.t. a Set of Variables) Given a setV
of variables, we say that a conjunction D of disequations, is satisfiable w.r.t. V iff there exists

Derivation of Efficient Logic Programs 151

a ground substitution σ with domain V , such that every ground instance of Dσ holds (see
Section 2.2). In particular, D is satisfiable w.r.t. ∅ iff every ground instance of D holds.

The satisfiability of a conjunction D of disequations w.r.t. a given set V of variables, can
be checked by using the following algorithm defined by structural induction:
(1) true, i.e., the empty conjunction of disequations, is satisfiable w.r.t. V ,
(2) (D1, D2) is satisfiable w.r.t. V iff both D1 and D2 are satisfiable w.r.t. V ,
(3) X �= t is satisfiable w.r.t. V iff X occurs in V and t is either a nonvariable term or a
variable occurring in V distinct from X,
(4) t �= X is satisfiable w.r.t. V iff X �= t is satisfiable w.r.t. V ,
(5) f(. . .) �= g(. . .), where f and g are distinct function symbols, is satisfiable w.r.t. V , and
(6) f(t1, . . . , tm) �= f(u1, . . . , um) is satisfiable w.r.t. V iff at least one disequation among
t1 �=u1, . . . , tm �=um is satisfiable w.r.t. V .

The correctness of this algorithm relies on the fact that the set of function symbols is
infinite (see Section 2.1).

Definition 10 (Linearity) A program P is said to be linear iff every clause of P has at
most one nonbasic atom in its body.

Definition 11 (Guard of a Clause) The guard of a clause C, denoted grd(C), is bd(C)
if all atoms in bd(C) are disequations, otherwise grd(C) is the (possibly empty) conjunction
of the disequations occurring in bd(C) to the left of the leftmost atom which is not a
disequation.

Definition 12 (Mutually Exclusive Clauses) Let us consider a mode M for the follow-
ing two, renamed apart clauses:

C1. p(t1, u1) ← G1

C2. p(t2, u2) ← G2

where: (i) p is a predicate of arity k (≥0) whose first h arguments, with 0≤h≤k, are input
arguments according to M , (ii) t1 and t2 are h-tuples of terms denoting the input arguments
of p, and (iii) u1 and u2 are (k−h)-tuples of terms.
We say that C1 and C2 are mutually exclusive w.r.t. mode M iff either (i) t1 is not unifiable
with t2 or (ii) t1 and t2 are unifiable via an mgu ϑ and (grd(C1), grd(C2))ϑ is not satisfiable
w.r.t. vars(t1, t2).
If h=0 we stipulate that the empty tuples t1 and t2 are unifiable via an mgu which is the
identity substitution.

The following proposition is useful for proving that a program is semideterministic.

Proposition 2 (Sufficient Condition for Semideterminism) If (i) P is a linear pro-
gram, (ii) P is safe w.r.t. a given mode M , (iii) P satisfies M , and (iv) the nonunit clauses
of P are pairwise mutually exclusive w.r.t. M , then P is semideterministic w.r.t. M .

Proof : See [35, Appendix B]. ��
In Section 6, we will present a strategy for deriving specialized programs which satisfies

the hypotheses (i)–(iv) of the above Proposition 2, and thus, these derived programs are
semideterministic.

The following examples show that in Proposition 2 no hypothesis on program P can be
discarded.

152 Alberto Pettorossi et al.

Example 8 Consider the following program P and the mode M = {p, q} for P :
1. p ← q, q
2. q ←
3. q ← q

P is not linear, but P is safe w.r.t. M and P satisfies M . The nonunit clauses of P which are
the clauses 1 and 3, are pairwise mutually exclusive. However, P is not semideterministic
w.r.t. M , because p �−→∗

P (q, q), and there exist two nonbasic goals, namely q and (q, q),
such that (q, q) ⇒P q and (q, q) ⇒P (q, q).

Example 9 Consider the following program Q and the mode M = {p(?), q1, q2} for Q:
1. p(X) ← X �=0, q1

2. p(1) ← q2

Q is linear and it satisfies M , but Q is not safe w.r.t. M because X is not an input variable
of p. Clauses 1 and 2 are mutually exclusive w.r.t. M , because the set of input variables
in p(X) is empty and X �=0 is not satisfiable w.r.t. ∅. However, Q is not semideterministic
w.r.t. M , because p(1) �−→∗

Q p(1), and there exist two non-basic goals, namely q1 and q2,
such that p(1) ⇒Q q1 and p(1) ⇒Q q2.

Example 10 Consider the following program R and the mode M = {p, r(+), r1, r2} for R:
1. p ← r(X)
2. r(1) ← r1

3. r(2) ← r2

R is linear and safe w.r.t. M , but R does not satisfy M , because p �−→R r(X) and X is
not a ground term. Clauses 1, 2, and 3 are pairwise mutually exclusive. However, R is not
semideterministic w.r.t. M , because p �−→∗

R r(X) and there exist two nonbasic goals, namely
r1 and r2, such that r(X) ⇒R r1 and r(X) ⇒R r2.

Example 11 Consider the following program S and the mode M = {p, r1, r2} for S:
1. p ← r1

2. p ← r2

S is linear and safe w.r.t. M , and S satisfies M . Clauses 1 and 2 are not pairwise mutually
exclusive. S is not semideterministic w.r.t. M , because p �−→∗

S p, and there exist two nonbasic
goals, namely r1 and r2, such that p⇒S r1 and p⇒S r2.

We conclude this section by observing that when a program consists of mutually exclusive
clauses and, thus, it is semideterministic, it may be executed very efficiently on standard
Prolog systems by inserting cuts in a suitable way. We will return to this point in Section 8
when we discuss the speedups obtained by our specialization technique.

6 A Transformation Strategy for Specializing Programs
and Reducing Nondeterminism

In this section we present a strategy, called Determinization, for guiding the application
of the transformation rules presented in Section 4.1. Our strategy pursues the following
objectives. (1) The specialization of a program w.r.t. a particular goal. This is similar to what
partial deduction does. (2) The elimination of multiple or intermediate data structures. This
is similar to what the strategies for eliminating unnecessary variables [38] and conjunctive
partial deduction do. (3) The reduction of nondeterminism. This is accomplished by deriving
programs whose nonunit clauses are mutually exclusive w.r.t. a given mode, that is, by
Proposition 2, semideterministic programs.

The Determinization Strategy is based upon three subsidiary strategies: (i) the Unfold-
Simplify subsidiary strategy, which uses the safe unfolding, equation elimination, disequation

Derivation of Efficient Logic Programs 153

replacement, and subsumption rules, (ii) the Partition subsidiary strategy, which uses the
safe case split, equation elimination, disequation replacement, subsumption, and safe head
generalization rules, and (iii) the Define-Fold subsidiary strategy which uses the definition
introduction and safe folding rules. For reasons of clarity, during the presentation of the
Determinization Strategy we use high-level descriptions of the subsidiary strategies. These
descriptions are used to establish the correctness of Determinization (see Theorem 7). Full
details of the subsidiary strategies will be given in Sections 6.2, 6.3, and 6.4, respectively.

6.1 The Determinization Strategy

Given an initial program P , a mode M for P , and an atom p(t1, . . . , th) w.r.t. which we
want to specialize P , we introduce by the definition introduction rule, the clause

S: ps(X1, . . . , Xr) ← p(t1, . . . , th)
where X1, . . . , Xr are the distinct variables occurring in p(t1, . . . , th).
We also define a mode ps(m1, . . . , mr) for the predicate ps by stipulating that, for any
j = 1, . . . , r, mj is + iff Xj is an input variable of p(t1, . . . , th) according to the mode M .
We assume that the program P is safe w.r.t. M . Thus, also program P ∪ {S} is safe w.r.t.
M ∪{ps(m1, . . . , mr)}. We also assume that P satisfies mode M and thus, program P ∪{S}
satisfies mode M ∪ {ps(m1, . . . , mr)}.

Our Determinization Strategy is presented below as an iterative procedure that, at each
iteration, manipulates the following three sets of clauses: (1) TransfP, which is the set of
clauses from which we will construct the specialized program, (2) Defs, which is the set of
clauses introduced by the definition introduction rule, and (3) Cls, which is the set of clauses
to be transformed during the current iteration. Initially, Cls consists of the single clause S:
ps(X1, . . . , Xr) ← p(t1, . . . , th) which is constructed as we have indicated above.

The Determinization Strategy starts off each iteration by applying the Unfold-Simplify
subsidiary strategy to the set Cls, thereby deriving a new set of clauses called UnfoldedCls.
The Unfold-Simplify strategy first unfolds the clauses in Cls, and then it simplifies the
derived set of clauses by applying the equation elimination, disequation replacement, and
subsumption rules.

Then the set UnfoldedCls is divided into two sets: (i) UnitCls, which is the set of unit
clauses, and (ii) NonunitCls, which is the set of non-unit clauses. The Determinization Strat-
egy proceeds by applying the Partition subsidiary strategy to NonunitCls, thereby deriving
a new set of clauses called PartitionedCls. The Partition strategy consists of suitable appli-
cations of the case split, equation elimination, disequation replacement, and head generaliza-
tion rules such that the set PartitionedCls has the following property: it can be partitioned
into sets of clauses, called packets, such that two clauses taken from different packets are
mutually exclusive (w.r.t. a suitable mode).

The Determinization Strategy continues by applying the Define-Fold subsidiary strategy
to the clauses in PartitionedCls, thereby deriving a new, semideterministic set of clauses
called FoldedCls. The Define-Fold subsidiary strategy introduces a (possibly empty) set
NewDefs of definition clauses such that each packet can be folded into a single clause by
using a set of definition clauses in Defs ∪NewDefs . We have that clauses derived by folding
different packets are mutually exclusive and, thus, UnitCls ∪ FoldedCls is semideterministic.

At the end of each iteration, UnitCls ∪ FoldedCls is added to TransfP, NewDefs is added
to Defs, and the value of the set Cls is updated to NewDefs.

The Determinization Strategy terminates when Cls = ∅, that is, no new predicate is
introduced during the current iteration.

Determinization Strategy
Input: A program P , an atom p(t1, . . . , th) w.r.t. which we want to specialize P , and a
mode M for P such that P is safe w.r.t. M and P satisfies M .

154 Alberto Pettorossi et al.

Output: A specialized program Ps , and an atom ps(X1,. . . , Xr), with {X1,. . . , Xr} =
vars(p(t1,. . . , th)) such that: (i) for every ground substitution ϑ = {X1/u1, . . . , Xr/ur},
M(P) |= p(t1, . . . , th)ϑ iff M(Ps) |= ps(X1, . . . , Xr)ϑ, and (ii) for every substitution σ =
{X1/v1, . . . , Xr/vr} such that the atom p(t1, . . . , th)σ satisfies mode M , we have that: (ii.1)
p(t1, . . . , th)σ succeeds in P iff ps(X1, . . . , Xr)σ succeeds in Ps, and (ii.2) Ps is semideter-
ministic for ps(X1, . . . , Xr)σ.

Initialize: Let S be the clause ps(X1, . . . , Xr) ← p(t1, . . . , th).
TransfP := P ; Defs := {S}; Cls := {S}; Ms := M ∪ {ps(m1, . . . , mr)}, where for any
j = 1, . . . , r, mj = + iff Xj is an input variable of p(t1, . . . , th) according to the mode M ;

while Cls �= ∅ do
(1) Unfold-Simplify:

We apply the safe unfolding, equation elimination, disequation replacement, and sub-
sumption rules according to the Unfold-Simplify Strategy given in Section 6.2 below,
and from Cls we derive a new set of clauses UnfoldedCls.

(2) Partition:
Let UnitCls be the unit clauses occurring in UnfoldedCls, and NonunitCls be the set of
non-unit clauses in UnfoldedCls.
We apply the safe case split, equation elimination, disequation replacement, and safe
head generalization rules according to the Partition Strategy given in Section 6.3 below,
and from NonunitCls we derive a set PartitionedCls of clauses which is the union of
disjoint subsets of clauses. Each subset is called a packet. The packets of PartitionedCls
enjoy the following properties:
(2a) each packet is a set of clauses of the form (modulo renaming of variables):⎧⎨⎩

H ← Diseqs, G1

· · ·
H ← Diseqs, Gm

where Diseqs is a conjunction of disequations and for k = 1, . . . , m, no disequation occurs
in Gk, and
(2b) for any two clauses C1 and C2, if the packet of C1 is different from the packet of
C2, then C1 and C2 are mutually exclusive w.r.t. mode Ms.

(3) Define-Fold:
We apply the definition introduction and the safe folding rules according to the Define-
Fold subsidiary strategy given in Section 6.4 below. According to that strategy, we
introduce a (possibly empty) set NewDefs of new definition clauses and a set Mnew of
modes such that:

(3a) in Mnew there exists exactly one mode for each distinct head predicate in NewDefs,
and

(3b) from each packet in PartitionedCls we derive a single clause of the form:
H ← Diseqs,newp(. . .)

by an application of the folding rule, which is safe w.r.t. Mnew , using the clauses in
Defs ∪NewDefs .

Let FoldedCls be the set of clauses derived by folding the packets in PartitionedCls.
(4) TransfP := TransfP ∪UnitCls ∪FoldedCls; Defs := Defs ∪NewDefs ; Cls := NewDefs ;

Ms := Ms ∪Mnew

end-while
We derive the specialized program Ps by applying the definition elimination rule and keeping
only the clauses of TransfP on which ps depends.

The Determinization Strategy may fail to terminate for two reasons: (i) the Unfold-Simplify
subsidiary strategy may not terminate, because it may perform infinitely many unfolding

Derivation of Efficient Logic Programs 155

steps, and (ii) the condition Cls �= ∅ for exiting the while-do loop may always be false,
because at each iteration the Define-Fold subsidiary strategy may introduce new definition
clauses. We will discuss these issues in more detail in Section 9.

Now we show that, if the Determinization Strategy terminates, then the least Herbrand
model and the operational semantics are preserved. Moreover, the derived specialized pro-
gram Ps is semideterministic for ps(X1, . . . , Xr)σ as indicated by the following theorem.

Theorem 7 (Correctness of the Determinization Strategy) Let us consider a pro-
gram P , a nonbasic atom p(t1, . . . , th), and a mode M for P such that: (1) P is safe w.r.t.
M and (2) P satisfies M . If the Determinization Strategy terminates with output program
Ps and output atom ps(X1, . . . , Xr) where {X1, . . . , Xr} = vars(p(t1, . . . , th)), then

(i) for every ground substitution ϑ = {X1/u1, . . . , Xr/ur},
M(P) |= p(t1, . . . , th)ϑ iff M(Ps) |= ps(X1, . . . , Xr)ϑ and

(ii) for every substitution σ = {X1/v1, . . . , Xr/vr} such that the atom p(t1, . . . , th)σ satisfies
mode M ,
(ii.1) p(t1, . . . , th)σ succeeds in P iff ps(X1, . . . , Xr)σ succeeds in Ps, and
(ii.2) Ps is semideterministic for ps(X1, . . . , Xr)σ.

Proof : Let Defs and Ps be the set of definition clauses and the specialized program obtained
at the end of the Determinization Strategy.
(i) Since ps(X1, . . . ,Xr)←p(t1, . . . , th) is the only clause for ps in P∪Defs and {X1, . . . ,Xr}=
vars(p(t1, . . . , th)), for every ground substitution ϑ = {X1/u1, . . . , Xr/ur} we have that
M(P) |= p(t1, . . . , th)ϑ iff M(P ∪Defs) |= ps(X1, . . . , Xr)ϑ. By the correctness of the trans-
formation rules w.r.t. the least Herbrand model (see Theorem 5), we have that M(P ∪
Defs) |= ps(X1, . . . , Xr)ϑ iff M(Ps) |= ps(X1, . . . , Xr)ϑ.
Point (ii.1) follows from Theorem 6 because during the Determinization Strategy, each ap-
plication of the unfolding, folding, head generalization, and case split rule is safe.
(ii.2) We first observe that, by construction, for every substitution σ, the atom p(t1, . . . , th)σ
satisfies mode M iff ps(X1, . . . , Xr)σ satisfies mode Ms, where Ms is the mode obtained from
M at the end of the Determinization Strategy. Thus, Point (ii.2) can be shown by proving
that Ps is semideterministic w.r.t. Ms. In order to prove this fact, it is enough to prove that
TransfPw−P is semideterministic w.r.t. Ms, where TransfPw is the set of clauses which is the
value of the variable TransfP at the end of the while-do statement of the Determinization
Strategy. Indeed, Ps is equal to TransfPw−P because, by construction, ps does not depend
on any clause of P , and thus, by the final application of the definition elimination rule, all
clauses of P are removed from TransfPw .

By Proposition 2, it is enough to prove that: (a) TransfPw−P is linear, (b) TransfPw−P
is safe w.r.t. Ms, (c) TransfPw−P satisfies Ms, and (d) the nonunit clauses of TransfPw−P
are pairwise mutually exclusive w.r.t. Ms.

Property (a) holds because according to the Determinization Strategy, after every appli-
cation of the safe folding rule we get a clause of the form: H ← Diseqs,newp(. . .), where a
single nonbasic atom occurs in the body. All other clauses in TransfPw−P are unit clauses.

Properties (b) and (c) follow from Theorem 6 recalling that the application of the un-
folding, folding, head generalization, and case split rules are all safe.

Property (d) can be proved by showing that, during the execution of the Determinization
Strategy, the following Property (I) holds:

(I): all the non-unit clauses of TransfP−P are pairwise mutually exclusive w.r.t. Ms.
Indeed, initially TransfP−P is empty and thus, Property (I) holds. Furthermore, Property (I)
is an invariant of the while-do loop. Indeed, at the end of each execution of the body of
the while-do (see Point (4) of the strategy), the nonunit clauses which are added to the
current value of TransfP are the elements of the set FoldedCls and those nonunit clauses are

156 Alberto Pettorossi et al.

derived by applying the Partition and Define-Fold subsidiary strategies at Points (3) and (4),
respectively. By construction, the clauses in FoldedCls are pairwise mutually exclusive w.r.t.
Mnew, and their head predicates do not occur in TransfP . Thus, the clauses of TransfP ∪
UnitCls∪FoldedCls are pairwise mutually exclusive w.r.t. Ms∪Mnew. As a consequence, after
the two assignments (see Point (4) of the strategy) TransfP := TransfP∪UnitCls∪FoldedCls
and Ms := Ms ∪Mnew, we have that Property (I) holds. ��

Now we describe the three subsidiary strategies for realizing the Unfold-Simplify, Parti-
tion, and Define-Fold transformations as specified by the Determinization Strategy. We will
see these subsidiary strategies in action in the examples of Section 7.

During the application of our subsidiary strategies it will be convenient to rewrite every
safe clause into its normal form. The normal form N of a safe clause can be constructed
by performing disequation replacements and disequation promotions, so that the following
Properties N1–N5 hold:
(N1) every disequation is of the form: X �= t, with t different from X and unifiable with X,
(N2) every disequation occurs in bd(N) to the left of every atom different from a disequation,
(N3) if X �= Y occurs in bd(N) and both X and Y are input variables of hd(N), then in
hd(N) the leftmost occurrence of X is to the left of the leftmost occurrence of Y ,
(N4) for every disequation of the form X �= Y where Y is an input variable, we have that
also X is an input variable, and
(N5) for any pair of disequations d1 and d2 in bd(N), it does not exist a substitution ρ which
is a bijective mapping from the set of the local variables of d1 in N onto the set of the local
variables of d2 in N such that d1ρ = d2.
We have that: (i) the normal form of a safe clause is unique, modulo renaming of variables
and disequation promotion, (ii) no two equal disequations occur in the normal form of a
safe clause, and (iii) given a program P and a mode M for P such that P is safe w.r.t. M
and P satisfies M , if we rewrite a clause of P into its normal form, then the least Herbrand
model semantics and the operational semantics are preserved (this fact is a consequence of
Theorem 5, Theorem 6, and Proposition 1).

A safe clause for which Properties N1–N5 hold, is said to be in normal form. If a clause
C is in normal form, then by Property N2, every disequation in bd(C) occurs also in grd(C).

6.2 The Unfold-Simplify Subsidiary Strategy

The Unfold-Simplify strategy first unfolds the clauses in Cls w.r.t. the leftmost atom in
their body, and then it keeps unfolding the derived clauses as long as input variables are not
instantiated. Now, in order to give the formal definition of the Unfold-Simplify strategy we
introduce the following concept.

Definition 13 (Consumer Atom) Let P be a program and M a mode for P . A nonbasic
atom q(t1, . . . , tk) is said to be a consumer atom iff for every nonunit clause in P whose head
unifies with that nonbasic atom via an mgu ϑ, we have that for i = 1, . . . , k, if ti is an input
argument of q then tiϑ is a variant of ti.

The Unfold-Simplify strategy is realized by the following Unfold-Simplify procedure,
where the expression Simplify(S) denotes the set of clauses derived from a given set S of
clauses by: (1) first, applying whenever possible the equation elimination rule to the clauses
in S, (2) then, rewriting the derived clauses into their normal form, and (3) finally, applying
as long as possible the subsumption rule.

Procedure Unfold-Simplify(Cls,UnfoldedCls).
Input: A set Cls of clauses in a program P and a mode Ms for P . P is safe w.r.t. Ms and
for each C ∈ Cls, the input variables of the leftmost nonbasic atom in the body of C are
input variables of the head of C.

Derivation of Efficient Logic Programs 157

Output: A new set UnfoldedCls of clauses which are derived from Cls by applying the
safe unfolding, equation elimination, disequation replacement, and subsumption rules. The
clauses in UnfoldedCls are safe w.r.t. Ms.
(1) Unfold w.r.t. Leftmost Non-basic Atom:

UnfoldedCls := {E | there exists a clause C ∈ Cls and clause E is derived by unfolding
C w.r.t. the leftmost nonbasic atom in its body};

UnfoldedCls := Simplify(UnfoldedCls)
(2) Unfold w.r.t. Leftmost Consumer Atom:

while there exists a clause C ∈ UnfoldedCls whose body has a leftmost consumer atom,
say A, such that the unfolding of C w.r.t. A is safe do
UnfoldedCls := (UnfoldedCls − {C}) ∪ {E | E is derived by unfolding C w.r.t. A};
UnfoldedCls := Simplify(UnfoldedCls)
end-while

Notice that our assumptions on the input program P and clauses Cls ensure that the first
unfolding step performed by the Unfold-Simplify procedure is safe.

Notice also that our Unfold-Simplify strategy may fail to terminate. We will briefly return
to this issue in Section 9.

Our Unfold-Simplify strategy differs from usual unfolding strategies for (conjunctive)
partial deduction (see, for instance, [8,13,36,41]), because mode information is used. We have
found this strategy very effective on several examples as shown in the following Section 7.

6.3 The Partition Subsidiary Strategy

The Partition strategy is realized by the following procedure, where we will write p(t, u) to
denote an atom with nonbasic predicate p of arity k (≥ 0), such that: (i) t is an h-tuple of
terms, with 0≤h≤ k, denoting the h input arguments of p, and (ii) u is a (k−h)-tuple of
terms denoting the arguments of p which are not input arguments.

Procedure Partition(NonunitCls,PartitionedCls).
Input: A set NonunitCls of nonunit clauses in normal form and without variables in common.
A mode Ms for NonunitCls. The clauses in NonunitCls are safe w.r.t. Ms.
Output: A set PartitionedCls of clauses which is the union of disjoint packets of clauses
such that:
(2a) each packet is a set of clauses of the form (modulo renaming of variables):⎧⎨⎩

H ← Diseqs, G1

· · ·
H ← Diseqs, Gm

where Diseqs is a conjunction of disequations and for k = 1, . . . , m, no disequation occurs
in Gk, and
(2b) for any two clauses C1 and C2, if the packet of C1 is different from the packet of C2,
then C1 and C2 are mutually exclusive w.r.t. mode Ms.
The clauses in PartitionedCls are in normal form and they are safe w.r.t. Ms.

while there exist in NonunitCls two clauses of the form:
C1. p(t1, u1) ← Body1

C2. p(t2, u2) ← Body2

such that: (i) C1 and C2 are not mutually exclusive w.r.t. mode Ms, and either
(ii.1) t1 is not a variant of t2 or
(ii.2) t1 is a variant of t2 via an mgu ϑ such that t1ϑ= t2, and for any substitution ρ which
is a bijective mapping from the set of local variables of grd(C1ϑ) in C1ϑ onto the set of

158 Alberto Pettorossi et al.

local variables of grd(C2) in C2, grd(C1ϑρ) cannot be made syntactically equal to grd(C2)
by applying disequation promotion
do
We take a binding X/r as follows.

(Case 1) Suppose that t1 is not a variant of t2. In this case, since C1 and C2 are not
mutually exclusive, we have that t1 and t2 are unifiable and, for some i, j ∈ {1, 2}, with
i �= j, there exists an mgu ϑ of ti and tj and a binding Y/ta in ϑ such that tj{Y/ta} is
not a variant of tj . Without loss of generality we may assume that i=1 and j =2. Then
we take the binding X/r to be Y/ta.
(Case 2) Suppose that t1 is a variant of t2 via an mgu ϑ. Now every safe clause whose
normal form has a disequation of the form X �= t, where X is a local variable of that
disequation in that clause, is mutually exclusive w.r.t. any other safe clause. This is
the case because, for any substitution σ which does not bind X, tσ is unifiable with X
and, thus, X �= tσ is not satisfiable. Thus, for some i, j ∈ {1, 2}, with i �= j, there exists
a disequation (Y �= ta)ϑ in grd(Ciϑ) where Y ϑ is an input variable of hd(Ciϑ), such
that for any substitution ρ which is a bijective mapping from the set of local variables
of grd(Ciϑ) in Ciϑ onto the set of local variables of grd(Cjϑ) in Cjϑ and for every
disequation (Z �= tb)ϑ in grd(Cjϑ), we have that (Y �= ta)ϑρ is different from (Z �= tb)ϑ.
We also have that Y ϑ is an input variable of hd(Cjϑ). Without loss of generality we
may assume that i=1, j =2, t1ϑ= t2, and C2ϑ=C2. Then we take the binding X/r to
be (Y/ta)ϑ.

We apply the case split rule to clause C2 w.r.t. X/r, that is, we derive the two clauses:
C21. (p(t2, u2) ← Body2){X/r}
C22. p(t2, u2) ← X �=r,Body2

We update the value of NonunitCls as follows:
NonunitCls := (NonunitCls − {C2}) ∪ {C21, C22}
NonunitCls := Simplify(NonunitCls).

end-while
Now the set NonunitCls is partitioned into subsets of clauses and after suitable renaming of
variables and disequation promotion, each subset is of the form:⎧⎨⎩

p(t, u1) ← Diseqs,Goal1
· · ·

p(t, um) ← Diseqs,Goalm
where Diseqs is a conjunction of disequations and for k = 1, . . . , m, no disequation occurs
in Goalk, and any two clauses in different subsets are mutually exclusive w.r.t. mode Ms.
Then we process every subset of clauses we have derived, by applying the safe head general-
ization rule so to replace the non-input arguments in the heads of the clauses belonging to
the same subset by their most specific common generalization. Thus, every subset of clauses
will eventually take the form:⎧⎨⎩

p(t, u) ← Eqs1,Diseqs,Goal1
· · ·

p(t, u) ← Eqsm,Diseqs,Goalm
where u is the most specific common generalization of the terms u1, . . . , um and, for k =
1, . . . , m, the goal Eqsk is a conjunction of the equations V1 = v1, . . . , Vr = vr such that
u{V1/v1, . . . , Vr/vr} = uk.
Finally, we move all disequations to the leftmost positions of the body of every clause,
thereby getting the set PartitionedCls .

Notice that in the above procedure the application of the case split rule to clause C2 w.r.t.
X/r is safe because: (i) clauses C1 and C2 are safe w.r.t. Ms, (ii) X is an input variable

Derivation of Efficient Logic Programs 159

of hd(C22) (recall that our choice of X/r in Case 2 ensures that X is an input variable of
hd(C2)), and (iii) each variable in r is either an input variable of hd(C22) or a local variable
of X �= r in C22. Thus, clauses C21 and C22 are safe w.r.t. mode Ms and they are also
mutually exclusive w.r.t. Ms.

The following property is particularly important for the mechanization of our Deter-
minization Strategy.

Theorem 8 The Partition procedure terminates.

Proof : See [35, Appendix C]. ��
When the Partition procedure terminates, it returns a set PartitionedCls of clauses which

is the union of packets of clauses enjoying Properties (2a) and (2b) indicated in the Output
specification of that procedure. These properties are a straightforward consequence of the
termination condition of the while-do statement of that same procedure.

6.4 The Define-Fold Subsidiary Strategy

The Define-Fold strategy is realized by the following procedure.

Procedure Define-Fold(PartitionedCls,Defs,NewDefs ,FoldedCls).
Input: (i) A mode Ms, (ii) a set PartitionedCls of clauses which are safe w.r.t. Ms, and (iii)
a set Defs of definition clauses. PartitionedCls is the union of the disjoint packets of clauses
computed by the Partition subsidiary strategy.
Output: (i) A (possibly empty) set NewDefs of definition clauses, together with a mode
Mnew consisting of exactly one mode for each distinct head predicate in NewDefs. For each
C ∈ NewDefs , the input variables of the leftmost non-basic atom in the body of C are input
variables of the head of C. (ii) A set FoldedCls of folded clauses.

NewDefs := ∅; Mnew := ∅; FoldedCls := ∅;
while there exists in PartitionedCls a packet Q of the form:⎧⎨⎩

H ← Diseqs, G1

· · ·
H ← Diseqs, Gm

where Diseqs is a conjunction of disequations and for k = 1, . . . , m, no disequation occurs
in Gk,
do PartitionedCls := PartitionedCls −Q and apply the definition and safe folding rules as
follows.

Case (α) Let us suppose that the set Defs of the available definition clauses contains a
subset of clauses of the form:⎧⎨⎩

newq(X1, . . . , Xh) ← G1

· · ·
newq(X1, . . . , Xh) ← Gm

such that: (i) they are all the clauses in Defs for predicate newq, (ii) X1, . . . , Xh include
every variable which occurs in one of the goals G1, . . . , Gm and also occurs in one of the
goals H,Diseqs (this property is needed for the correctness of folding, see Section 4.1),
and (iii) for i = 1, . . . , h, if Xi is an input argument of newq then Xi is either an input
variable of H (according to the given mode Ms) or an input variable of the leftmost
non-basic atom of one of the goals G1, . . . , Gm. Then we fold the given packet and we
get:
FoldedCls := FoldedCls ∪ {H ← Diseqs,newq(X1, . . . , Xh)}

160 Alberto Pettorossi et al.

Case (β) If in Defs there is no set of definition clauses satisfying the conditions described
in Case (α), then we add to NewDefs the following clauses for a new predicate newr :⎧⎨⎩

newr(X1, . . . , Xh) ← G1

· · ·
newr(X1, . . . , Xh) ← Gm

where, for i = 1, . . . , h, either (i) Xi occurs in one of the goals G1, . . . , Gm and also occurs
in one of the goals H,Diseqs , or (ii) Xi is an input variable of the leftmost nonbasic atom
of one of the goals G1, . . . , Gm. We add to Mnew the mode newr(m1, . . . , mh) such that
for i = 1, . . . , h, mi =+ iff Xi is either an input variable of H or an input variable of the
leftmost nonbasic atom of one of the goals G1, . . . , Gm. We then fold the packet under
consideration and we get:
FoldedCls := FoldedCls ∪ {H ← Diseqs,newr(X1, . . . , Xh)}

end-while

Notice that the post-conditions on the set NewDefs which is derived by the Define-Fold
procedure (see Point (i) of the Output of the procedure), ensure the satisfaction of the
pre-conditions on the set Cls which is an input of the Unfold-Simplify procedure. Indeed,
recall that the set Cls is constructed during the Determinization Strategy by the assignment
Cls := NewDefs . Recall also that these pre-conditions are needed to ensure that the first
unfolding step performed by the Unfold-Simplify procedure is safe.

Notice also that each application of the folding rule is safe (see Definition 5). This fact
is implied in Case (α) by Condition (iii), and in Case (β) by the definition of the mode for
newr .

Finally, notice that the Define-Fold procedure terminates. However, this procedure does
not guarantee the termination of the specialization process, because at each iteration of the
while-do loop of the Determinization Strategy, the Define-Fold procedure may introduce a
nonempty set of new definition clauses. We will briefly discuss this issue in Section 9.

7 Examples of Application of the Determinization Strategy

In this section we will present some examples of program specialization where we will see
in action our Determinization Strategy together with the Unfold-Simplify, Partition, and
Define-Fold subsidiary strategies.

7.1 A Complete Derivation: Computing the Occurrences of a Pattern
in a String

We consider again the program Match_Pos of Section 5.3. The mode M for the program
Match_Pos is {match_pos(+,+, ?), append(?, ?,+), length(+, ?)}. We leave it to the reader
to verify that Match_Pos satisfies M .

The derivation we will perform using the Determinization Strategy is more challenging
than the ones presented in the literature (see, for instance, [11–13,15,44]) because an occur-
rence of the pattern P in the string S is specified in the initial program (see clause 1) in a
nondeterministic way by stipulating the existence of two substrings L and R such that S is
the concatenation of L, P , and R.

We want to specialize the Match_Pos program w.r.t. the atom match_pos([a, a, b], S,N).
Thus, we first introduce the definition clause:

6. match_poss(S,N) ← match_pos([a, a, b], S,N)
The mode of the new predicate is match_poss(+, ?) because S is an input argument of
match_pos and N is not an input argument. Our transformation strategy starts off with
the following initial values: Defs = Cls = {6}, TransfP = Match_Pos, and Ms = M ∪
{match_poss(+, ?)}.

Derivation of Efficient Logic Programs 161

First Iteration

Unfold-Simplify. By unfolding clause 6 w.r.t. the leftmost atom in its body we derive:
7. match_poss(S,N) ← append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

The body of clause 7 has no consumer atoms (notice that, for instance, the mgu of the
atom append(Y,R, S) and the head of clause 5 has the binding S/[A|Z] where S is an
input variable). Thus, the Unfold-Simplify subsidiary strategy terminates. We have that:
UnfoldedCls = {7}.
Partition. NonunitCls is made out of clause 7 only, and thus, the Partition subsidiary strategy
immediately terminates and produces a set PartitionedCls which consists of a single packet
made out of clause 7.
Define-Fold. In order to fold clause 7 in PartitionedCls, the Define-Fold subsidiary strategy
introduces the following definition clause:

8. new1(S,N) ← append(Y,R, S), append(L, [a, a, b], Y), length(L,N)
The mode of new1 is new1(+, ?). By folding clause 7 using clause 8 we derive:

9. match_poss(S,N) ← new1(S,N)
Thus, the first iteration of the Determinization Strategy terminates with Defs = {6, 8},
Cls = {8}, TransfP = Match_Pos ∪ {9}, and Ms = M ∪ {match_poss(+, ?), new1(+, ?)}.
Second Iteration

Unfold-Simplify. We follow the subsidiary strategy described in Section 6.2 and we first
unfold clause 8 in Cls w.r.t. the leftmost atom in its body. We get:

10. new1(S,N) ← append(L, [a, a, b], []), length(L,N)
11. new1([C|S], N) ← append(Y,R, S), append(L, [a, a, b], [C|Y]), length(L,N)

Now we unfold clauses 10 and 11 w.r.t. the leftmost consumer atom of their bodies (see
the underlined atoms). The unfolding of clause 10 amounts to its deletion because the atom
append(L, [a, a, b], []) is not unifiable with any head in program Match_Pos. The unfolding
of clause 11 yields two new clauses that are further unfolded according to the Unfold-Simplify
subsidiary strategy. After some unfolding steps, we derive the following clauses:

12. new1([a|S], 0) ← append([a, b], R, S)
13. new1([C|S], s(N)) ← append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

Partition. We apply the safe case split rule to clause 13 w.r.t. to the binding C/a, because
the input argument in the head of this clause is unifiable with the input argument in the
head of clause 12 via the mgu {C/a}. We derive the following two clauses:

14. new1([a|S], s(N)) ← append(Y,R, S), append(L, [a, a, b], Y), length(L,N)
15. new1([C|S], s(N)) ← C �=a, append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

Now, the set of clauses derived so far by the Partition subsidiary strategy can be partitioned
into two packets: the first one is made out of clauses 12 and 14, where the input argument
of the head predicate is of the form [a|S], and the second one is made out of clause 15 only,
where the input argument of the head predicate is of the form [C|S] with C �=a.

The Partition subsidiary strategy terminates by applying the safe head generalization
rule to clauses 12 and 14, so to replace the second arguments in their heads by the most
specific common generalization of those arguments, that is, a variable. We get the packet:

16. new1([a|S],M) ← M =0, append([a, b], R, S)
17. new1([a|S],M) ← M =s(N), append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

For the packet made out of clause 15 only, no application of the safe head generalization
rule is performed. Thus, we have derived the set of clauses PartitionCls which is the union
of the two packets {16, 17} and {15}.

162 Alberto Pettorossi et al.

Define-Fold. Since there is no set of definition clauses in Defs which can be used to fold
the packet {16, 17}, we are in Case (α) of the Define-Fold subsidiary strategy. Thus, we
introduce a new predicate new2 as follows:

18. new2(S,M) ← M =0, append([a, b], R, S)
19. new2(S,M) ← M =s(N), append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

The mode of new2 is new2(+, ?) because S is an input variable of the head of each clause
of the corresponding packet. By folding clauses 16 and 17 using clauses 18 and 19 we derive
the following clause:

20. new1([a|S],M) ← new2(S,M)
We then consider the packet made out of clause 15 only. This packet can be folded using
clause 8 in Defs. Thus, we are in Case (β) of the Define-Fold subsidiary strategy. By folding
clause 15 we derive the following clause:

21. new1([C|S], s(N)) ← C �=a, new1(S,N)
Thus, FoldedCls is the set {20, 21}.

After these folding steps we conclude the second iteration of the Determinization Strat-
egy with the following assignments: Defs := Defs ∪ {18, 19}; Cls := {18, 19}; TransfP :=
TransfP ∪ {20, 21}; Ms := Ms ∪ {new2(+, ?)}.
Third Iteration

Unfold-Simplify. From Cls, that is, clauses 18 and 19, we derive the set UnfoldedCls made
out of the following clauses:

22. new2([a|S], 0) ← append([b], R, S)
23. new2([a|S], s(0)) ← append([a, b], R, S)
24. new2([C|S], s(s(N))) ← append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

Partition. The set NonunitCls is identical to UnfoldedCls. From NonunitCls we derive the set
PartitionedCls which is the union of two packets. The first packet consists of the following
clauses:

25. new2([a|S],M) ← M =0, append([b], R, S)
26. new2([a|S],M) ← M =s(0), append([a, b], R, S)
27. new2([a|S],M) ← M =s(s(N)), append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

The second packet consists of the following clause only:
28. new2([C|S], s(s(N))) ← C �=a, append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

Define-Fold. We introduce the following definition clauses:
29. new3(S,M) ← M =0, append([b], R, S)
30. new3(S,M) ← M =s(0), append([a, b], R, S)
31. new3(S,M) ← M =s(s(N)), append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

where the mode for new3 is new3(+, ?). By folding, from PartitionedCls we derive the
following two clauses:

32. new2([a|S],M) ← new3(S,M)
33. new2([C|S], s(s(N))) ← C �=a, new1(S,N)

which constitute the set FoldedCls.
The third iteration of the Determinization Strategy terminates with the following as-

signments: Defs := Defs ∪ {29, 30, 31}; Cls := {29, 30, 31}; TransfP := TransfP ∪ {32, 33};
Ms := Ms ∪ {new3(+, ?)}.

Derivation of Efficient Logic Programs 163

Fourth Iteration

Unfold-Simplify. From Cls we derive the new set UnfoldedCls made out of the following
clauses:

34. new3([b|S], 0) ← append([], R, S)
35. new3([a|S], s(0)) ← append([b], R, S)
36. new3([a|S], s(s(0))) ← append([a, b], R, S)
37. new3([C|S], s(s(s(N)))) ← append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

Partition. The set NonunitCls is identical to UnfoldedCls. From NonunitCls we derive the
new set PartitionedCls made out of the following clauses:

38. new3([a|S], s(M)) ←M =0, append([b], R, S)
39. new3([a|S], s(M)) ←M =s(0), append([a, b], R, S)
40. new3([a|S], s(M)) ← M =s(s(N)), append(Y,R, S), append(L, [a, a, b], Y),

length(L,N)
41. new3([b|S],M) ← M =0, append([], R, S)
42. new3([b|S],M) ← M =s(s(s(N))), append(Y,R, S), append(L, [a, a, b], Y),

length(L,N)
43. new3([C|S], s(s(s(N)))) ← C �=a,C �=b, append(Y,R, S), append(L, [a, a, b], Y),

length(L,N)
PartitionedCls consists of three packets: {38, 39, 40}, {41, 42}, and {43}.
Define-Fold. We introduce two new predicates by means of the following definition clauses:

44. new4(S,M) ← M =0, append([], R, S)
45. new4(S,M) ← M =s(s(s(N))), append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

We now fold the clauses in PartitionedCls and we derive the set FoldedCls made out of the
following clauses:

46. new3([a|S], s(M)) ← new3(R,S)
47. new3([b|S],M) ← new4(R,S)
48. new3([C|S], s(s(s(N)))) ← C �=a, C �=b, new1(S,N)

The fourth iteration terminates with the following assignments: Defs := Defs ∪ {44, 45};
Cls := {44, 45}; TransfP := TransfP ∪ {46, 47, 48}; Ms := Ms ∪ {new4(+, ?)}.
Fifth Iteration

Unfold-Simplify. From Cls we derive the new set UnfoldedCls made out of the following
clauses:

49. new4(S, 0) ←
50. new4([a|S], s(s(s(0)))) ← append([a, b], R, S)
51. new4([C|S], s(s(s(s(N))))) ← append(Y,R, S), append(L, [a, a, b], Y), length(L,N)

Partition. The set NonunitCls is made out of clauses 50 and 51. From NonunitCls we derive
the new set PartitionedCls made out of the following clauses:

52. new4([a|S], s(s(s(M)))) ←M =0, append([a, b], R, S)
53. new4([a|S], s(s(s(M)))) ← M =s(N), append(Y,R, S), append(L, [a, a, b], Y),

length(L,N)
54. new4([C|S], s(s(s(s(N))))) ← C �=a, append(Y,R, S), append(L, [a, a, b], Y),

length(L,N)
PartitionedCls consists of two packets: {52, 53} and {54}.
Define-Fold. We are able to perform all required folding steps without introducing new
definition clauses (see Case (α) of the Define-Fold procedure). In particular, (i) we fold
clauses 52 and 53 using clauses 18 and 19, and (ii) we fold clause 54 using clause 8. Since no

164 Alberto Pettorossi et al.

new definition is introduced, the set Cls is empty and the transformation strategy terminates.
Our final specialized program is the program Match_Poss shown in Section 5.3.

The Match_Poss program is semideterministic and it corresponds to the finite au-
tomaton with one counter depicted in Figure 1. The predicates correspond to the states
of the automaton and the clauses correspond to the transitions. The predicate new1 cor-
responds to the initial state, because the program is intended to be used for goals of
the form match_poss(S,N), where S is bound to a list of characters, and by clause 1
match_poss(S,N) calls new1(S,N). Notice that this finite automaton is deterministic ex-
cept for the state corresponding to the predicate new4, where the automaton can either
(i) accept the input string by returning the value of N and moving to the final state true,
even if the input string has not been completely scanned (see clause 49), or (ii) move to the
state corresponding to new2, if the symbol of the input string which is scanned is a (see
clause 55), or (iii) move to the state corresponding to new1, if the symbol of the input string
which is scanned is different from a (see clause 56).

N :=0

new1 new2 new3 new4 true

=a, N :=N+1

= a, N :=N+3

any character

return N

�=a, N :=N+4

�=a, N :=N+1

=a =a =b

�= a, N :=N+2

�=a and �=b, N :=N+3

Fig. 1. The finite automaton with the counter N which corresponds to Match_Poss .

7.2 Multiple Pattern Matching

Given a list Ps of patterns and a string S we want to compute the position, say N , of any
occurrence in S of a pattern which is a member of the list Ps. For any given Ps and S the
following program computes N in a nondeterministic way:

Program Mmatch (initial, nondeterministic)
1. mmatch([P |Ps], S,N) ← match_pos(P, S,N)
2. mmatch([P |Ps], S,N) ← mmatch(Ps, S,N)

The atom mmatch(Ps, S,N) holds iff there exists a pattern in the list Ps of patterns which
occurs in the string S at position N . The predicate match_pos is defined as in program
Match_Pos of Section 7.1, and its clauses are not listed here. We consider the following
mode for the program Mmatch:
{mmatch(+,+, ?), match_pos(+,+, ?), append(?, ?,+), length(+, ?)}.

We want to specialize this multipattern matching program w.r.t. the list [[a, a, a], [a, a, b]]
of patterns. Thus, we introduce the following definition clause:

3. mmatchs(S,N) ← mmatch([[a, a, a], [a, a, b]], S,N)

Derivation of Efficient Logic Programs 165

The mode of the new predicate is mmatchs(+, ?) because S is an input argument of mmatch
and N is not an input argument. Thus, our Determinization Strategy starts off with the fol-
lowing initial values: Defs =Cls ={3}, TransfP = Mmatch, and Ms = M∪{mmatchs(+, ?)}.

The output of the Determinization Strategy is the following program Mmatchs :

Program Mmatchs (specialized, semideterministic)
4. mmatchs(S,N) ← new1(S,N)
5. new1([a|S],M) ← new2(S,M)
6. new1([C|S], s(N)) ← C �=a, new1(S,N)
7. new2([a|S],M) ← new3(S,M)
8. new2([C|S], s(s(N))) ← C �=a, new1(S,N)
9. new3([a|S],M) ← new4(S,M)

10. new3([b|S],M) ← new5(S,M)
11. new3([C|S], s(s(s(N)))) ← C �=a, C �=b, new1(S,N)
12. new4(S, 0) ←
13. new4([a|S], s(N)) ← new4(S,N)
14. new4([b|S], s(N)) ← new5(S,N)
15. new4([C|S], s(s(s(s(N))))) ←C �=a, C �=b, new1(S,N)
16. new5(S, 0) ←
17. new5([a|S], s(s(s(N)))) ← new2(S,N)
18. new5([C|S], s(s(s(s(N))))) ← C �=a, new1(S,N)

Similarly to the single-pattern string matching example of the previous Section 7.1, this
specialized, semideterministic program corresponds to a finite automaton with counters. This
finite automaton is deterministic, except for the states corresponding to the predicates new4
and new5 where any remaining portion of the input word is accepted. A similar derivation
cannot be performed by usual partial deduction techniques without a prior transformation
into failure continuation passing style [44].

7.3 From Regular Expressions to Finite Automata

In this example we show the derivation of a deterministic finite automaton by specializing a
general parser for regular expressions w.r.t. a given regular expression. The initial program
Reg_Expr for testing whether or not a string belongs to the language denoted by a regular
expression over the alphabet {a, b}, is the one given below.

Program Reg_Expr (initial, nondeterministic)
1. in_language(E,S) ← string(S), accepts(E,S)
2. string([])←
3. string([a|S]) ← string(S)
4. string([b|S]) ← string(S)
5. accepts(E, [E]) ← symbol(E)
6. accepts(E1E2, S) ← append(S1, S2, S), accepts(E1, S1), accepts(E2, S2)
7. accepts(E1+E2, S) ← accepts(E1, S)
8. accepts(E1+E2, S) ← accepts(E2, S)
9. accepts(E∗, [])

10. accepts(E∗, S) ← ne_append(S1, S2, S), accepts(E,S1), accepts(E∗, S2)
11. symbol(a) ←
12. symbol(b) ←
13. ne_append([A], Y, [A|Y]) ←
14. ne_append([A|X], Y, [A|Z]) ← ne_append(X,Y,Z)

We have that in_language(E,S) holds iff S is a string in {a, b}∗ and S belongs to the
language denoted by the regular expression E. In this Reg_Expr program we have used the

166 Alberto Pettorossi et al.

predicate ne_append(S1, S2, S) which holds iff the nonempty string S is the concatenation
of the nonempty string S1 and the string S2. The use of the atom ne_append(S1, S2, S)
in clause 10 ensures that we have a terminating program, that is, a program for which we
cannot have an infinite derivation when starting from a ground goal. Indeed, if in clause 10
we replace ne_append(S1, S2, S) by append(S1, S2, S), then we may construct an infinite
derivation because from a goal of the form accepts(E∗, S) we can derive a new goal of the
form (accepts(E, []), accepts(E∗, S)).

We consider the following mode for the program Reg_Expr :
{in_language(+,+), string(+), accepts(+,+), symbol(+), ne_append(?, ?,+),
append(?, ?,+)}.

We use our Determinization Strategy to specialize the program Reg_Expr w.r.t. the
atom in_language((aa∗(b+bb))∗, S). Thus, we begin by introducing the definition clause:

15. in_languages(S) ← in_language((aa∗(b+bb))∗, S)
The mode for this new predicate is in_languages(+) because S is an input argument of
in_language. The output of the Determinization Strategy is the following specialized pro-
gram Reg_Exprs :

Program Reg_Exprs (specialized, semideterministic)
16. in_languages(S) ← new1(S)
17. new1([]) ←
18. new1([a|S]) ← new2(S)
19. new2([a|S]) ← new3(S)
20. new2([b|S]) ← new4(S)
21. new3([a|S]) ← new3(S)
22. new3([b|S]) ← new4(S)
23. new4([]) ←
24. new4([a|S]) ← new2(S)
25. new4([b|S]) ← new1(S)

This specialized program corresponds to a deterministic finite automaton.

7.4 Matching Regular Expressions

The following nondeterministic program defines a relation re_match(E,S), where E is a
regular expression and S is a string, which holds iff there exists a substring P of S such that
P belongs to the language denoted by E:

Program Reg_Expr_Match (initial, nondeterministic)
1. re_match(E,S) ← append(Y,R, S), append(L, P, Y), accepts(E,P)

The predicates append and accepts are defined as in the programs Naive_Match (see Sec-
tion 3.3) and Reg_Expr (see Section 7.3), respectively, and their clauses are not listed here.
We consider the following mode for the program Reg_Expr_Match:
{append(?, ?,+), accepts(+,+), re_match(+,+)}.

We want to specialize the program Reg_Expr_Match w.r.t. the regular expression aa∗b.
Thus, we introduce the following definition clause:

2. re_matchs(S) ← re_match(aa∗b, S)
The mode of this new predicate is re_matchs(+) because S is an input argument of
re_match. The output of the Determinization Strategy is the following program:

Derivation of Efficient Logic Programs 167

Program Reg_Expr_Matchs (specialized, semideterministic)
3. re_matchs(S) ← new1(S)
4. new1([a|S]) ← new2(S)
5. new1([C|S]) ← C �=a, new1(S)
6. new2([a|S]) ← new3(S)
7. new2([C|S]) ← C �=a, new1(S)
8. new3([a|S]) ← new4(S)
9. new3([b|S]) ← new3(S)

10. new3([C|S]) ← C �=a, C �=b, new1(S)
11. new4(S) ←

Similarly to the single-pattern string matching example of Section 3.3, this specialized,
semideterministic program corresponds to a deterministic finite automaton.

7.5 Specializing Context-free Parsers to Regular Grammars

Let us consider the following program for parsing context-free languages:

Program CF_Parser (initial, nondeterministic)
1. string_parse(G,A,W) ← string(W), parse(G,A,W)
2. string([])←
3. string([0|W]) ← string(W)
4. string([1|W]) ← string(W)
5. parse(G , [], [])←
6. parse(G , [A|X], [A|Y]) ← terminal(A), parse(G,X, Y)
7. parse(G, [A|X], Y) ← nonterminal(A), member(A → B,G),

append(B,X,Z), parse(G,Z, Y)
8. member(A, [A|X]) ←
9. member(A, [B|X]) ← member(A,X)

together with the clauses for the predicate append defined as in program Match_Pos (see
Section 7.1), and the unit clauses stating that 0 and 1 are terminals and s, u, v, and w are
nonterminals. The first argument of parse is a context-free grammar, the second argument
is a list of terminal and nonterminal symbols, and the third argument is a word represented
as a list of terminal symbols. We assume that a context-free grammar is represented as a
list of productions of the form x → y, where x is a nonterminal symbol and y is a list of
terminal and nonterminal symbols. We have that parse(G, [s],W) holds iff from the symbol
s we can derive the word W using the grammar G.

We consider the following mode for the program CF_Parser :
{string_parse(+,+,+), string(+), parse(+,+,+), terminal(+), nonterminal(+),
member(?,+), append(+,+, ?)}.
We want to specialize our parsing program w.r.t. the following regular grammar:

s → 0u s → 0 v s→ 0w
u → 0 u → 0u u → 0 v
v → 0 v → 0 v v → 0u
w → 1 w → 0w

To this aim we apply our Determinization Strategy starting from the following definition
clause:

10. string_parses(W) ← parse([s → [0, u], s→ [0, v], s→ [0, w],
u → [0], u → [0, u], u → [0, v],
v → [0], v → [0, v], v → [0, u],
w → [1], w → [0, w]], [s], W)

168 Alberto Pettorossi et al.

The mode for this new predicate is string_parses(+). The output of the Determinization
Strategy is the following specialized program CF_Parsers :

Program CF_Parsers (specialized, semideterministic)
11. string_parses(W) ← new1(W)
12. new1([0|W]) ← new2(W)
13. new2([0|W]) ← new3(W)
14. new2([1|W]) ← new4(W)
15. new3([]) ←
16. new3([0|W]) ← new5(W)
17. new3([1|W]) ← new4(W)
18. new4([]) ←
19. new5([]) ←
20. new5([0|W]) ← new3(W)
21. new5([1|W]) ← new4(W)

This program corresponds to a deterministic finite automaton.
Now, we would like to discuss the improvements we achieved in this example by applying

our Determinization Strategy. Let us consider the derivation tree T1 (see Figure 2) generated
by the initial program CF_Parser starting from the goal string_parse(g, [s], [0n1]), where
g denotes the grammar w.r.t. which we have specialized the CF_Parser program and [0n1]
denotes the list [0, . . . , 0, 1] with n occurrences of 0. The nodes of T1 are labeled by the
goals derived from string_parse(g, [s], [0n1]). In particular, the root of the derivation tree is
labeled by string_parse(g, [s], [0n1]) and a node labeled by a goal G has k children labeled by
the goals G1, . . . , Gk which are derived from G (see Section 2.3). The tree T1 has a number
of nodes which is O(2n). Thus, by using the initial program CF_Parser it takes O(2n)
number of steps to search for a derivation from the root goal string_parse(g, [s], [0n1]) to
the goal true. (Indeed, this is the case if one uses a Prolog compiler.) In contrast, by using
the specialized program CF_Parsers , it takes O(n) steps to search for a derivation from
the goal string_parses([0n1]) to true, because the derivation tree T2 has a number of nodes
which is O(n) (see Figure 3).

string([0n1]), parse(g, [s], [0n1])

string_parse(g, [s], [0n1])

parse(g, [w], [0n−11])

parse(g, [w], [0n−21])

true

parse(g, [u], [0n−21])

parse(g, [s], [0n1])

(n≥2)

parse(g, [u], [0n−21])

parse(g, [u], [0n−11]) parse(g, [v], [0n−11])

parse(g, [v], [0n−21])parse(g, [v], [0n−21])

no successes

Fig. 2. Derivation tree T1 for string_parse(g, [s], [0n1]).

Derivation of Efficient Logic Programs 169

The improvement of performance is due to the fact that our Determinization Strategy is
able to avoid repeated derivations by introducing new definition clauses whose bodies have
goals from which common subgoals are derived. Thus, after performing folding steps which
use these definition clauses, we reduce the search space during program execution.

For instance, our strategy introduces the predicate new2 defined by the following clauses:
new2(W) ← string(W), parse(g, [u],W)
new2(W) ← string(W), parse(g, [v],W)
new2(W) ← string(W), parse(g, [w],W)

whose bodies are goals from which common subgoals are derived for W =[0n−11] and n≥2.
Indeed, for instance, parse(g, [u], [0n−21]) can be derived from both parse(g, [u], [0n−11])
and parse(g, [v], [0n−11]) (see Figure 2). The reader may verify that by using the specialized
program CF_Parsers no repeated goal is derived from string_parses(g, [s], [0n1]).

The ability of our Determinization Strategy of putting together the computations per-
formed by the initial program in different branches of the computation tree, so that common
repeated subcomputations are avoided, is based on the ideas which motivate the tupling
strategy [34], first proposed as a transformation technique for functional languages.

(n≥2)string_parses(g, [s], [0n1])

new1([0n1])

new2([0n−11])

new3([0n−21])

true

Fig. 3. Derivation tree T2 for string_parses([0n1]).

8 Experimental Evaluation

The Determinization Strategy has been implemented in the MAP program transformation
system [39]. All program specialization examples presented in Sections 3.3, 5.3, and 7 have
been worked out in a fully automatic way by the MAP system. We have compared the
specialization times and the speedups obtained by the MAP system with those obtained by
ECCE, a system for (conjunctive) partial deduction [24]. All experimental results reported
in this section have been obtained by using SICStus Prolog 3.8.5 running on a Pentium II
under Linux.

In Table 1 we consider the examples of Sections 3.3, 5.3, and 7, and we show the times
taken (i) for performing partial deduction by using the ECCE system, (ii) for performing
conjunctive partial deduction by using the ECCE system, and (iii) for applying the De-
terminization Strategy by using the MAP system. The static input shown in Column 2 of
Table 1 is the goal w.r.t. which we have specialized the programs of Column 1. For running
the ECCE system suitable choices among the available unfolding strategies and generaliza-
tion strategies should be made. We have used the choices suggested by the system itself for
partial deduction and conjunctive partial deduction, and we made some changes only when
specialization was not performed within a reasonable amount of time. For running the MAP
system the only information to be provided by the user is the mode for the program to be

170 Alberto Pettorossi et al.

specialized. The system assumes that the program satisfies this mode and no mode analysis
is performed.

Table 1. Specialization Times (in milliseconds).

Program Static Input ECCE ECCE MAP
(PD) (CPD) (Det)

Naive_Match naive_match([aab], S) 360 370 70
Naive_Match naive_match([aaaaaaaaab], S) 420 2120 480
Match_Pos match_pos([aab], S, N) 540 360 100
Match_Pos match_pos([aaaaaaaaab], S, N) 650 910 500
Mmatch mmatch([[aaa], [aab]], S, N) 1150 1400 280
Mmatch mmatch([[aa], [aaa], [aab]], S, N) 1740 2040 220
Reg_Expr in_language((aa∗(b+bb))∗, S) 6260 138900 420
Reg_Expr in_language(a∗(b+bb+bbb), S) 3460 5430 230
Reg_Expr_Match re_match(aa∗b, S) 970 5290 210
Reg_Expr_Match re_match(a∗(b + bb), S) 1970 11200 300
CF_Parser string_parse(g, [s], W) 23400 32700 1620
CF_Parser string_parse(g1, [s], W) 31200 31800 2000

The experimental results of Table 1 show that the MAP implementation of the Deter-
minization Strategy is much faster than the ECCE implementation of both partial deduc-
tion and conjunctive partial deduction. We believe that, essentially, this is due to the fact
that ECCE employs very sophisticated techniques, such as those based on homeomorphic
embeddings, for controlling the unfolding and the generalization steps, and ensuring the
termination of the specialization process. For a fair comparison, however, we should recall
that Determinization may not terminate on examples different from those considered in this
paper.

We have already mentioned in Section 3.3 that the performance of the programs de-
rived by the Determinization Strategy may be further improved by applying postprocessing
transformations which exploit the semideterminism of the programs. In particular, we may:
(i) reorder the clauses so that unit clauses appear before non-unit clauses, and (ii) remove
disequations by introducing cuts instead. The reader may verify that these transforma-
tions preserve the operational semantics. For a systematic treatment of cut introduction,
the reader may refer to [10, 43]. As an example we now show the program obtained from
Match_Poss (see Section 5.3) after the above post-processing transformations have been
performed.

Program Match_Poscut (specialized, with cuts)
match_poss(S,N) ← new1(S,N)
new1([a|S],M) ← !, new2(S,M)
new1([C|S], s(N)) ← new1(S,N)
new2([a|S],M) ← !, new3(S,M)
new2([C|S], s(s(N))) ← new1(S,N)
new3([a|S], s(M)) ← !, new3(R,S)
new3([b|S],M) ← !, new4(R,S)
new3([C|S], s(s(s(N)))) ← new1(S,N)
new4(S, 0) ←
new4([a|S], s(s(s(M)))) ← !, new2(S,M)
new4([C|S], s(s(s(s(N))))) ← new1(S,N)

Derivation of Efficient Logic Programs 171

In Table 2 below we report the speedups obtained by partial deduction, conjunctive partial
deduction, Determinization, and Determinization followed by disequation removal and cut
introduction. Every speedup is computed as the ratio between the timing of the initial
program and the timing of the specialized program. These timings were obtained by running
the various programs several times (up to 10,000) on significantly large input lists (up to
4,000 items).

Table 2. Speedups.

Program Static Input Speedup Speedup Speedup Speedup
(PD) (CPD) (Det) (Det and Cut)

Naive_Match naive_match([aab], S) 3.1 5.8×103 3.0×103 6.8×103

Naive_Match naive_match([aaaaaaaaab], S) 3.3 6.9×103 5.8×103 12.4×103

Match_Pos match_pos([aab], S, N) 1.6 3.6×103 1.8×103 4.0×103

Match_Pos match_pos([aaaaaaaaab], S, N) 2.1 5.3×103 2.9×103 8.1×103

Mmatch mmatch([[aaa], [aab]], S, N) 1.7 4.5×103 3.5×103 6.2×103

Mmatch mmatch([[aa], [aaa], [aab]], S, N) 1.6 2.5×103 3.9×103 5.4×103

Reg_Expr in_language((aa∗(b+bb))∗, S) 29.8 6.2×103 2.3×105 3.9×105

Reg_Expr in_language(a∗(b+bb+bbb), S) 1.3×104 3.3×104 4.6×104 5.7×104

Reg_Expr_Match re_match(aa∗b, S) 5.7×102 2.7×104 1.5×106 3.0×106

Reg_Expr_Match re_match(a∗(b + bb), S) 2.1×102 3.4×103 2.5×105 4.1×105

CF_Parser string_parse(g, [s], W) 1.5 1.5 87.1 87.1
CF_Parser string_parse(g1, [s], W) 1.1 1.1 61.3 61.3

To clarify the content of Table 2 let us remark that:
Column 1 shows the names of the initial programs with reference to Sections 3.3, 5.3, and 7.
Column 2 shows the static input. The argument [aab] denotes the list [a, a, b]. Similar no-
tation has been used for the other static input arguments. The argument g of the first
string_parse atom denotes the regular grammar considered in Example 7.5. The argument
g1 of the last string_parse atom denotes the regular grammar:
{s → 0u, s → 1 v, u → 0, u → 0 v, u → 0w, v → 1, v → 0 v, v → 1u, w → 1,
w → 1w}.
Column 3, called Speedup (PD), shows the speedups we have obtained after the application
of partial deduction.
Column 4, called Speedup (CPD), shows the speedups we have obtained after the application
of conjunctive partial deduction.
Column 5, called Speedup (Det), shows the speedups we have obtained after the application
of the Determinization Strategy.
Column 6, called Speedup (Det and Cut), shows the speedups we have obtained after the
application of the Determinization Strategy followed by the removal of disequations and the
introduction of cuts.

Let us now discuss our experimental results of Table 2. In all examples the best speedups
are those obtained after the application of the Determinization Strategy followed by the
removal of disequations and the introduction of cuts (see column Det and Cut).

As expected, conjunctive partial deduction gives higher speedups than partial deduction.
In some cases, conjunctive partial deduction gives better results than Determinization

(see the first five rows of columns CPD and Det). This happens in examples where most
nondeterminism is avoided by eliminating intermediate lists (see, for instance, the exam-
ple of Section 3.3). In those examples, in fact, the Determinization Strategy may be less
advantageous than conjunctive partial deduction because it introduces disequations which

172 Alberto Pettorossi et al.

may be costly to check at runtime. However, as already mentioned, all disequations may be
eliminated by introducing cuts (or, equivalently, if-then-else constructs) and the programs
derived after disequation removal and cut introduction are indeed more efficient than those
derived by conjunctive partial deduction (see column Det and Cut).

For some programs (see, for instance, the entries for Reg_Expr and CF_Parser) the
speedups of the (Det) column are equal to the speedups of the (Det and Cut) column. The
reason for this fact is the absence of disequations in the specialized program, so that the
introduction of cuts does not improve efficiency.

We would like to notice that further postprocessing techniques are applicable. For in-
stance, similarly to the familiar case of finite automata, we may eliminate clauses corre-
sponding to ε-transitions where no input symbols are consumed (such as clause 9 in program
Match_Poss), and we may also minimize the number of predicate symbols (this corresponds
to the minimization of the number of states). We do not present here these postprocessing
techniques because they are outside the scope of the paper.

In summary, the experimental results of Table 2 confirm that in the examples we have
considered, the Determinization Strategy followed by the removal of disequations in favour of
cuts, achieves greater speedups than (conjunctive) partial deduction. However, it should be
noticed that, as already mentioned, Determinization does not guarantee termination, while
(conjunctive) partial deduction does, and in order to terminate in all cases, (conjunctive)
partial deduction employs generalization techniques that may reduce speedups. In the next
section we further discuss the issue of devising a generalization technique that ensures the
termination of the Determinization Strategy.

9 Concluding Remarks and Related Work

We have proposed a specialization technique for logic programs based on an automatic strat-
egy, called Determinization Strategy, which makes use of the following transformation rules:
(1) definition introduction, (2) definition elimination, (3) unfolding, (4) folding, (5) subsump-
tion, (6) head generalization, (7) case split, (8) equation elimination, and (9) disequation
replacement. (Actually, we make use of the safe versions of Rules 4, 6, 7, and 8.) We have
also shown that our strategy may reduce the amount of nondeterminism in the specialized
programs and it may achieve exponential gains in time complexity.

To get these results, we allow new predicates to be introduced by one or more non-
recursive definition clauses whose bodies may contain more than one atom. We also allow
folding steps using these definition clauses. By a folding step several clauses are replaced by
a single clause, thereby reducing nondeterminism.

The use of the subsumption rule is motivated by the desire of increasing efficiency by
avoiding redundant computations. Head generalizations are used for deriving clauses with
equal heads and thus, they allow us to perform folding steps. The case split rule is very
important for reducing nondeterminism because it replaces a clause, say C, by several clauses
which correspond to exhaustive and mutually exclusive instantiations of the head of C. To get
exhaustiveness and mutual exclusion, we allow the introduction of disequalities. To further
increase program efficiency, in a postprocessing phase these disequalities may be removed in
favour of cuts.

We assume that the initial program to be specialized is associated with a mode of use
for its predicates. Our Determinization Strategy makes use of this mode information for di-
recting the various transformation steps, and in particular, the applications of the unfolding
and case split rules. Moreover, if our strategy terminates, it derives specialized programs
which are semideterministic w.r.t. the given mode. This notion has been formally defined
in Section 5.3. Although semideterminism is not in itself a guarantee for efficiency improve-
ment, it is often the case that efficiency is increased because nondeterminism is reduced and
redundant computations are avoided.

Derivation of Efficient Logic Programs 173

We have shown that the transformation rules we use for program specialization, are
correct w.r.t. the declarative semantics of logic programs based on the least Herbrand model.
The proof of this correctness result is similar to the proofs of the correctness results which
are presented in [14,40,46].

We have also considered an operational semantics for our logic language where a dise-
quation t1 �= t2 holds iff t1 and t2 are not unifiable. This operational semantics is sound, but
not complete w.r.t. the declarative semantics. Indeed, if a goal operationally succeeds in a
program, then it is true in the least Herbrand model of the program, but not vice versa.
Thus, the proof of correctness of our transformation rules w.r.t. the operational semantics
cannot be based on previous results and it is much more elaborate. Indeed, it requires some
restrictions, related to the modes of the predicates, both on the programs to be specialized
and on the applicability of the transformation rules.

In Section 3 we have extensively discussed the fact that our specialization technique is
more powerful than partial deduction [21, 29]. The main reason of the greater power of our
technique is that it uses more powerful transformation rules. In particular, partial deduction
corresponds to the use the definition introduction, definition elimination, unfolding, and
folding transformation rules, with the restriction that we may only fold a single atom at a
time in the body of a clause.

Our extended rules allow us to introduce and transform new predicates defined in terms
of disjunctions of conjunctions of atoms (recall that a set of clauses with the same head is
equivalent to a single clause whose premise is the disjunction of the bodies of the clauses in
the given set). In this respect, our technique improves over conjunctive partial deduction [8],
which is a specialization technique where new predicates are defined in terms of conjunctions
of atoms.

We have implemented the Determinization Strategy in the MAP transformation sys-
tem [39] and we have tested this implementation by performing several specializations of
string matching and parsing programs. We have also compared the results obtained by using
the MAP system with those obtained by using the ECCE system for (conjunctive) partial
deduction [24]. Our computer experiments confirm that the Determinization Strategy pays
off w.r.t. both partial deduction and conjunctive partial deduction.

Our transformation technique works for programs where the only negative literals which
are allowed in the body of a clause, are disequations between terms. The extension of the
Determinization Strategy to normal logic programs would require an extension of the trans-
formation rules and, in particular, it would be necessary to use a negative unfolding rule,
that is, a rule for unfolding a clause w.r.t. a (possibly nonground) negative literal different
from a disequation. The correctness of unfold/fold transformation systems which use the
negative unfolding rule has been studied in contexts rather different from the one considered
here (see, for instance, the work on transformation of first order programs [42]) and its use
within the Determinization Strategy requires further work.

The Determinization Strategy may fail to terminate for two reasons: (i) the Unfold-
Simplify subsidiary strategy may apply the unfolding rule infinitely often, and (ii) the while-
do loop of the Determinization Strategy may not terminate, because at each iteration the
Define-Fold subsidiary strategy may introduce new predicates.

The termination of the Unfold-Simplify strategy can be guaranteed by applying the
techniques for finite unfolding already developed for (conjunctive) partial deduction (see, for
instance, [8,23,30]). Indeed, the unfolding rule used in this paper is similar to the unfolding
rule used in partial deduction.

The introduction of an infinite number of new predicates can be avoided by extend-
ing various methods based on generalization, such as those used in (conjunctive) partial
deduction [8, 13, 25, 37]. Recall that in conjunctive partial deduction we may generalize a
predicate definition essentially by means of two techniques: (i) the replacement of a term by
a variable, which is then taken as an argument of a new predicate definition, and (ii) the

174 Alberto Pettorossi et al.

splitting of a conjunction of literals into subconjunctions (together with the introduction
of a new predicate for each subconjunction). It has been shown that the use of (i) and (ii)
in a suitably controlled way, allows conjunctive partial deduction to terminate in all cases.
However, termination is guaranteed at the expense of a possibly incomplete specialization
or a possibly incomplete elimination of the intermediate data structures.

In order to avoid the introduction of an infinite number of new predicate definitions
while applying the Determinization Strategy, we may follow an approach similar to the
one used in the case of conjunctive partial deduction. However, besides the generalization
techniques (i) and (ii) mentioned above, we may also need (iii) the splitting of the set of
clauses defining a predicate into subsets (together with the introduction of a new predicate
for each subset). Similarly to the case of conjunctive partial deduction, it can be shown that
suitably controlled applications of the generalization techniques (i), (ii), and (iii) guarantee
the termination of the Determinization Strategy at the expense of deriving programs which
may fail to be semideterministic.

We leave it for further research the issue of controlling generalization, so that we achieve
the termination of the specialization process and at the same time we maximize the reduction
of nondeterminism.

In the string matching examples we have worked out, our strategy is able to automatically
derive programs which behave like Knuth-Morris-Pratt algorithm, in the sense that they
generate a finite automaton from any given pattern and a general pattern matcher. This was
done also in the case of programs for matching sets of patterns and programs for matching
regular expressions.

In these examples the improvement over similar derivations performed by partial deduc-
tion techniques [11,13,44] consists in the fact that we have started from naive, nondetermin-
istic initial programs, while the corresponding derivations by partial deduction described in
the literature, use initial programs which are deterministic. Our derivations also improve over
the derivations performed by using supercompilation with perfect driving [15,47] and gener-
alized partial computation [12], which start from initial functional programs which already
incorporate some ingenuity.

A formal derivation of the Knuth-Morris-Pratt algorithm for pattern matching has also
been presented in [3]. This derivation follows the calculational approach which consists in
applying equivalences of higher order functions. On the one hand the calculational derivation
is more general than ours, because it takes into consideration a generic pattern, not a fixed
one (the string [a, a, b] in our Example 3.3), on the other hand the calculational derivation is
more specific than ours, because it deals with single-pattern string matching only, whereas
our strategy is able to automatically derive programs in a much larger class which also
includes multi-pattern matching, matching with regular expressions, and parsing.

The use of the case split rule is a form of reasoning by cases, which is a very well-known
technique in mechanical theorem proving (see, for instance, the Edinburgh LCF theorem
prover [17]). Forms of reasoning by cases have been incorporated in program specialization
techniques such as the already mentioned supercompilation with perfect driving [15, 47]
and generalized partial computation [12]. However, the strategy presented in this paper
is the first fully automatic transformation technique which uses case reasoning to reduce
nondeterminism of logic programs.

Besides specializing programs and reducing nondeterminism, our strategy is able to elim-
inate intermediate data structures. Indeed, the initial programs of our examples in Section 7
all have intermediate lists, while the specialized programs do not have them. Thus, our
strategy can be regarded as an extension of the transformation strategies for the elimination
of intermediate data structures (see the deforestation technique [48] for the case of func-
tional programs and the strategy for eliminating unnecessary variables [38] for the case of
logic programs). Moreover, our strategy derives specialized programs which avoid repeated

Derivation of Efficient Logic Programs 175

subcomputations (see the Context-free Parsing example of Section 7.5). In this respect our
strategy is similar to the tupling strategy for functional programs [34].

Finally, our specialization strategy is related to the program derivation techniques called
finite differencing [33] and incrementalization [27]. These techniques use program invariants
to avoid costly, repeated calculations of function calls. Our specialization strategy implicitly
discovers and exploits program invariants when using the folding rule. It should be noticed,
however, that it is difficult to establish in a rigorous way the formal connection between
the basic ideas underlying our specialization strategy and the above mentioned program
derivation methods based on program invariants. These methods, in fact, are presented in
a very different framework.

Acknowledgments

We would like to thank D. De Schreye, S. Etalle, J. Gallagher, R. Glück, N. D. Jones,
M. Leuschel, B. Martens, and M. H. Sørensen for stimulating discussions about partial
deduction and logic program specialization. We also acknowledge very constructive and
useful comments by the anonymous referees. This work has been partially supported by the
EC under the HCM Project “Logic Program Synthesis and Transformation” and the Italian
Ministry for Education, University, and Research.

References

1. K. R. Apt: Introduction to logic programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, 493–576. Elsevier, 1990.

2. K. R. Apt: From Logic Programming to Prolog. Prentice-Hall, London, 1997.
3. R. S. Bird, J. Gibbons, and G. Jones: Formal derivation of a pattern matching algorithm.

Science of Computer Programming, 12:93–104, 1989.
4. A. Bossi, N. Cocco, and S. Dulli: A method for specializing logic programs. ACM

Transactions on Programming Languages and Systems, 12(2):253–302, April 1990.
5. A. Bossi, N. Cocco, and S. Etalle: Transforming left-terminating programs. In A. Bossi,

editor, Proceedings of the Ninth International Workshop on Logic-based Program Syn-
thesis, LOPSTR’99, Venezia, Italy, September 22-24, 1999, Lecture Notes in Computer
Science 1817, 156–175. Springer, 2000.

6. R. M. Burstall and J. Darlington: A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, January 1977.

7. O. Danvy, R. Glück, and P. Thiemann, editors: Partial Evaluation. International Semi-
nar, Dagstuhl Castle, Germany, February 1996, Lecture Notes in Computer Science 1110,
Springer, 1996.

8. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H. Sørensen:
Conjunctive partial deduction: Foundations, control, algorithms, and experiments. Jour-
nal of Logic Programming, 41(2–3):231–277, 1999.

9. S. K. Debray and D. S. Warren: Automatic mode inference for logic programs. Journal
of Logic Programming, 5:207–229, 1988.

10. Y. Deville: Logic Programming: Systematic Program Development. Addison-Wesley,
1990.

11. H. Fujita: An algorithm for partial evaluation with constraints. Technical Memorandum
TM-0367, ICOT, Tokyo, Japan, 1987.

12. Y. Futamura, K. Nogi, and A. Takano: Essence of generalized partial computation.
Theoretical Computer Science, 90:61–79, 1991.

13. J. P. Gallagher: Tutorial on specialisation of logic programs. In Proceedings of ACM
Sigplan Symposium on Partial Evaluation and Semantics Based Program Manipulation,
PEPM ’93, Copenhagen, Denmark, 88–98. ACM Press, 1993.

176 Alberto Pettorossi et al.

14. M. Gergatsoulis and M. Katzouraki: Unfold/fold transformations for definite clause
programs. In M. Hermenegildo and J. Penjam, editors, Proceedings Sixth International
Symposium on Programming Language Implementation and Logic Programming (PLILP
’94), Lecture Notes in Computer Science 844, 340–354. Springer, 1994.

15. R. Glück and A.V. Klimov: Occam’s razor in metacomputation: the notion of a perfect
process tree. In P. Cousot, M. Falaschi, G. Filé, and A. Rauzy, editors, 3rd International
Workshop on Static Analysis, Padova, Italy, September 1993, Lecture Notes in Computer
Science 724, 112–123. Springer, 1993.

16. R. Glück and M. H. Sørensen: A roadmap to metacomputation by supercompilation.
In O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evaluation, Lecture Notes in
Computer Science 1110, 137–160. Springer, 1996.

17. M. J. Gordon, A. J. Milner, and C. P. Wadsworth: Edinburgh LCF. Lecture Notes in
Computer Science 78. Springer, 1979.

18. F. Henderson, Z. Somogyi, and T. Conway: Determinism analysis in the Mercury com-
piler. In Proceedings of the Australian Computer Science Conference, Melbourne, Aus-
tralia, 337–346, 1996.

19. M. V. Hermenegildo, F. Bueno, G. Puebla, and P. López: Program analysis, debugging,
and optimization using the CIAO system preprocessor. In D. De Schreye, editor, Pro-
ceedings of the 1999 International Conference on Logic Programming, Las Cruces, NM,
USA, Nov. 29 – Dec. 4, 1999, 52–66. MIT Press, 1999.

20. J. Jaffar, M. Maher, K. Marriott, and P. Stuckey: The semantics of constraint logic
programming. Journal of Logic Programming, 37:1–46, 1998.

21. N. D. Jones, C. K. Gomard, and P. Sestoft: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

22. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM
Journal on Computing, 6(2):323–350, 1977.

23. M. Leuschel: On the power of homeomorphic embedding for online termination. In
G. Levi, editor, Proceedings of the Fifth Static Analysis Symposium, SAS ’98, Pisa,
Italy, Lecture Notes in Computer Science 1503, 230–245. Springer, 1998.

24. M. Leuschel: The ECCE partial deduction system and the DPPD library of benchmarks,
Release 3, Nov. 2000. Available from http://www.ecs.soton.ac.uk/˜mal.

25. M. Leuschel, B. Martens, and D. De Schreye: Controlling generalization and polyvariance
in partial deduction of normal logic programs. ACM Transactions on Programming
Languages and Systems, 20(1):208–258, 1998.

26. M. Leuschel, B. Martens, and D. de Schreye: Some achievements and prospects in partial
deduction. ACM Computing Surveys, 30 (Electronic Section)(3es):4, 1998.

27. Y. A. Liu: Efficiency by incrementalization: An introduction. Higher-Order and Symbolic
Computation, 13(4):289–313, 2000.

28. J. W. Lloyd: Foundations of Logic Programming. Springer, Berlin. Second Edition,
1987.

29. J. W. Lloyd and J. C. Shepherdson: Partial evaluation in logic programming. Journal
of Logic Programming, 11:217–242, 1991.

30. B. Martens, D. De Schreye, and T. Horváth: Sound and complete partial deduction with
unfolding based on well-founded measures. Theoretical Computer Science, 122:97–117,
1994.

31. C. S. Mellish: Some global optimizations for a Prolog compiler. Journal of Logic Pro-
gramming, 2(1):43–66, 1985.

32. C. S. Mellish: Abstract interpretation of Prolog programs. In S. Abramsky and C. Han-
kin, editors, Abstract Interpretation of Declaratice Languages, chapter 8, 181–198. Ellis
Horwood, 1987.

33. R. Paige and S. Koenig: Finite differencing of computable expressions. ACM Transac-
tions on Programming Languages and Systems, 4(3):402–454, 1982.

Derivation of Efficient Logic Programs 177

34. A. Pettorossi: Transformation of programs and use of tupling strategy. In Proceedings
Informatica 77, Bled, Yugoslavia, 1–6, 1977.

35. A. Pettorossi, M. Proietti, and S. Renault: Derivation of efficient logic programs by spe-
cialization and reduction of nondeterminism. Higher-Order and Symbolic Computation,
18(1–2):121–210, 2005.

36. S. Prestwich: Online partial deduction of large programs. In ACM Sigplan Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM ’93,
Copenhagen, Denmark, 111–118. ACM Press, 1993.

37. M. Proietti and A. Pettorossi: The loop absorption and the generalization strategies for
the development of logic programs and partial deduction. Journal of Logic Programming,
16(1–2):123–161, 1993.

38. M. Proietti and A. Pettorossi: Unfolding-definition-folding, in this order, for avoiding
unnecessary variables in logic programs. Theoretical Computer Science, 142(1):89–124,
1995.

39. S. Renault: A system for transforming logic programs. R 97–04, Department of Com-
puter Science, University of Rome Tor Vergata, Rome, Italy, 1997.

40. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, and I. V. Ramakrishnan:
A parameterized unfold/fold transformation framework for definite logic programs. In
Proceedings of Principles and Practice of Declarative Programming (PPDP), Lecture
Notes in Computer Science 1702, 396–413. Springer, 1999.

41. D. Sahlin: Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12:7–51, 1993.

42. T. Sato: An equivalence preserving first order unfold/fold transformation system. The-
oretical Computer Science, 105:57–84, 1992.

43. H. Sawamura and T. Takeshima: Recursive unsolvability of determinacy, solvable cases
of determinacy and their application to Prolog optimization. In Proceedings of the Inter-
national Symposium on Logic Programming, Boston, 200–207. IEEE Computer Society
Press, 1985.

44. D. A. Smith: Partial evaluation of pattern matching in constraint logic programming
languages. In Proceedings ACM Symposium on Partial Evaluation and Semantics Based
Program Manipulation, PEPM ’91, New Haven, CT, USA, Sigplan Notices, 26, 9, 62–71.
ACM Press, 1991.

45. Z. Somogyi, F. Henderson, and T. Conway: The execution algorithm of Mercury: an
efficient purely declarative logic programming language. Journal of Logic Programming,
29(1–3):17–64, 1996.

46. H. Tamaki and T. Sato: Unfold/fold transformation of logic programs. In S.-Å. Tärn-
lund, editor, Proceedings of the Second International Conference on Logic Programming,
127–138, Uppsala University, Uppsala, Sweden, 1984.

47. V. F. Turchin: The concept of a supercompiler. ACM TOPLAS, 8(3):292–325, 1986.
48. P. L. Wadler: Deforestation: Transforming programs to eliminate trees. Theoretical

Computer Science, 73:231–248, 1990.
49. D. H. D. Warren: Implementing Prolog – compiling predicate logic programs. Research

Report 39 & 40, Department of Artificial Intelligence, University of Edinburgh, 1977.

Computational Divided Differencing
and Divided-Difference Arithmetics

Thomas W. Reps1 and Louis B. Rall2 ∗

1 Comp. Sci. Dept., Univ. of Wisconsin, 1210 W. Dayton St., Madison, WI 53706, USA.
reps@cs.wisc.edu

2 Dept. of Mathematics, Univ. of Wisconsin, 480 Lincoln Dr., Madison, WI 53706, USA.
rall@math.wisc.edu

Summary. Tools for computational differentiation transform a program that computes a numer-
ical function F (x) into a related program that computes F ′(x) (the derivative of F). This paper
describes how techniques similar to those used in computational-differentiation tools can be used
to implement other program transformations—in particular, a variety of transformations for com-
putational divided differencing. The paper also describes how computational divided differencing
relates to the numerical-finite-differencing techniques that motivated Robert Paige’s work on finite
differencing of set-valued expressions in SETL programs.

Keywords: divided differences, computational differentiation, interpolation, multivariate interpo-
lation, program transformation, round-off error.

1 Introduction

A variety of studies in the field of programming languages have led to useful, high-level
transformations that manipulate programs in semantically meaningful ways. In very general
terms, these tools transform a program that performs a computation F (x) into a program
that performs a related computation F �(x), for a variety of F �’s of interest.1 (In some cases,
an appropriate preprocessing operation h needs to be applied to the input; in such cases, the
transformed program F � is used to perform a computation of the form F �(h(x)).) Examples
of such tools include partial evaluators and program slicers:
– A partial evaluator creates a specialized version of a program when only part of the

program’s input has been supplied [8, 18, 29]. Partial evaluation is useful for removing
interpretive overhead, and can also speed up programs that have two arguments that
change value at different rates (such as ray tracing [43]).

– The slice of a program with respect to a set of program elements S is a projection of the
program that includes only program elements that might affect (either directly or transi-
tively) the values of the variables used at members of S [27,45,56]. Program-slicing tools
allow one to find semantically meaningful decompositions of programs, where the decom-
positions consist of elements that are not textually contiguous. Slicing, and subsequent
manipulation of slices, has applications in many software-engineering tools [26].

∗ Portions of this work appeared in [53]. Supported in part by NSF under grants CCR-{9625667,
9619219, 9986308}, the US-Israel Binational Science Foundation under grant 96-00337, ONR
under contract N00014-00-1-0607, the Humboldt Foundation, and the Guggenheim Foundation.

1 We do not generally make a distinction between programs and procedures. We use “program”
both to refer to the program as a whole, as well as to refer to individual subroutines in a generic
sense. We use “procedure” only in places where we wish to emphasize that the focus of interest
is an individual subroutine per se.

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 178–214.
c© 2008 Springer.

Computational Divided Differencing and Divided-Difference Arithmetics 179

Less well known in the programming-languages community is the work that has been done
by numerical analysts on tools for computational differentiation (also known as automatic
differentiation or algorithmic differentiation) [3, 22,23,48,57]:
– Given a program that computes a numerical function F (x), a computational-differenti-

ation tool creates a related program that computes F ′(x) (the derivative of F).
Applications of computational differentiation include optimization, solving differential equa-
tions, curve fitting, and sensitivity analysis.

The work described in this paper expands the set of tools that programmers have at their
disposal for performing such high-level, semantically meaningful program manipulations.
Because so much scientific, engineering, and graphical software tries to predict and render
modeled situations, such software often performs extrapolation and/or interpolation. These
operations often involve the computation of divided differences, which can suffer badly from
round-off error. In some cases, which motivate this paper, numerically unstable algorithms
can be stabilized by computing divided differences in a nonstandard way.

The paper describes how techniques similar to those that have been developed for compu-
tational differentiation can be used to transform programs that compute numerical functions
into ones that compute divided differences.
– We present a program transformation that, given a numerical function F (x) defined by a

program, creates a program that computes F [x0, x1], the first divided difference of F (x),
where

F [x0, x1]
def=

{
(F (x0)− F (x1)) / (x0 − x1) if x0 �= x1

d
dz F (z), evaluated at z = x0 if x0 = x1

(1)

– We show how computational first divided differencing generalizes computational differ-
entiation.

– We present a second program transformation that permits the creation of higher-order
divided differences of a numerical function defined by a program.

– We present a third program transformation that permits higher-order divided differences
to be computed more efficiently. This transformation does not apply to all programs;
however, we show that there is at least one important situation where this optimization
is of use.

– We extend these techniques to handle functions of several variables.
– Finally, we describe how our work on computational differencing relates to the numerical-

finite-differencing techniques that motivated Robert Paige’s work on finite differencing
of set-valued expressions in SETL [47].

Such program transformations can be implemented either as a source-to-source translation,
or by means of overloaded operators and reinterpreted operands (in which case the source
code is changed very little). The examples in the paper primarily illustrate the latter ap-
proach; the paper presents sketches of implementations of the various transformations in the
form of C++ class definitions (“divided-difference arithmetics”).

The benefits gained from the techniques described in the paper include the following:
– Because divided differences are the basis for a wide variety of numerical techniques,

including polynomial interpolation, numerical integration, and solving differential equa-
tions [10], this work could lead to more robust programs in scientific and graphics appli-
cations, when the function of interest is one that is defined by a program.

– Finite differences on an evenly spaced grid can be used to quickly generate a function’s
values at any number of points that extend the grid (see [19] and [47, pages 403–404]).
Because finite differences on an evenly spaced grid can be obtained from divided differ-
ences on an evenly spaced grid, our techniques may be useful in graphics applications
for quickly plotting a function, while retaining reasonable accuracy.

180 Thomas W. Reps and Louis B. Rall

– Because the divided-differencing problems that we address can be viewed as generaliza-
tions of problems such as differentiation, computation of Taylor coefficients, etc., some of
our techniques—in particular, the divided-difference arithmetic presented in Section 7—
represent new approaches that, with appropriate simplification, can also be applied in
computational-differentiation tools.

Empirical results presented in Sections 5 and 8 provide three concrete demonstrations of
some of the benefits that can be gained via our methods.

The remainder of the paper is organized as follows: Section 2 provides a succinct review
of the basic principles of computational differentiation. Section 3 discusses the basic principle
behind computational divided differencing. Section 4 shows how computational divided dif-
ferencing generalizes computational differentiation. Section 5 extends the ideas introduced in
Section 3 to higher-order computational divided differencing. Section 6 discusses techniques
that apply to a useful special case. Section 7 extends the ideas from Sections 3, 5, and 6 to
functions of several variables. Section 8 describes how these ideas relate to the numerical-
finite-differencing techniques that motivated Robert Paige’s work on finite differencing of
set-valued expressions in SETL programs. Section 9 discusses other related work.

2 Background on Computational Differentiation

A tool for computational differentiation transforms a program that computes a numerical
function F (x) into a related program that computes the derivative F ′(x). These tools address
the following issue: Suppose that you have a program F(x) that computes a numerical
function F (x). It is a bad idea to try to compute F ′(x0), the value of the derivative of
F at x0, by picking a small value delta_x and invoking the following program with the
argument x0:2

float delta_x = ...〈some small value〉 ...;
float F′_naive(float x) {

return (F(x + delta_x) - F(x))/delta_x;
}

(2)

For a small enough value of delta_x, the values of F(x0+delta_x) and F(x0) will usually
be very close. Round-off errors in the computation of F(x0+delta_x) and F(x0) are mag-
nified by the subtraction of the two quantities, and further amplified by the division by the
small quantity delta_x, which may cause the overall result to be useless. Computational
differentiation sidesteps this problem by computing derivatives in another fashion.

Example 1 [58] Suppose that we have a collection of programs fi for the functions fi,
1 ≤ i ≤ k, together with the program Prod shown below, which computes the function
Prod(x) =

∏k
i=1 fi(x). In addition, suppose that we also have programs f′i for the functions

f ′
i , 1 ≤ i ≤ k. Finally, suppose that we wish to obtain a program Prod′ that computes

Prod ′(x). Column two of the table given below shows mathematical expressions for Prod(x)
and Prod ′(x). Column three shows two C++ procedures: Prod computes Prod(x); Prod′ is
the procedure that a computational-differentiation system would create to compute Prod ′(x).

2 Courier Font is used to denote functions defined by programs, whereas Italic Font is used to
denote mathematical functions. That is, F (x) denotes a function (evaluated over real numbers),
whereas F(x) denotes a program (evaluated over floating-point numbers). Example programs
are all written in C++, although the ideas described apply to other programming languages—
including functional programming languages (cf. [33])—as well as to other imperative languages.
To emphasize the links between mathematical concepts and their implementations in C++, we
take the liberty of sometimes using ′ and/or subscripts on C++ identifiers.

Computational Divided Differencing and Divided-Difference Arithmetics 181

Mathematical Notation Programming Notation

Function Prod(x) =
k∏

i=1

fi(x)

float Prod(float x){
float ans = 1.0;
for (int i = 1; i <= k; i++){

ans = ans * fi(x);
}
return ans;

}

Derivative Prod ′(x) =
k∑

i=1

f ′
i(x) ∗

∏
j �=i

fj(x)

float Prod′(float x){
float ans′ = 0.0;
float ans = 1.0;
for (int i = 1; i <= k; i++){

ans′ = ans′ * fi(x) + ans * f′i(x);
ans = ans * fi(x);

}
return ans′;

}

Notice that Prod′ resembles Prod, as opposed to F′_naive (see box (2)). Prod′ preserves
accuracy in its computation of the derivative because, as illustrated below in Example 2, it
is based on the rules for the exact computation of derivatives, rather than on the kind of
computation performed by F′_naive. ��

Iteration Value of ans′ (as a function of x) Value of ans (as a function of x)

0 0.0 1.0

1 f′1(x) f1(x)

2 f′1(x) ∗ f2(x) + f1(x) ∗ f′2(x) f1(x) ∗ f2(x)

3
f′1(x) ∗ f2(x) ∗ f3(x)

+ f1(x) ∗ f′2(x) ∗ f3(x)
+ f1(x) ∗ f2(x) ∗ f′3(x)

f1(x) ∗ f2(x) ∗ f3(x)

.

k

k∑
i=1

f′i(x) ∗
∏
j �=i

fj(x)
k∏

i=1

fi(x)

Fig. 1. The values of ans′ and ans at the start of each iteration of the for-loop.

The transformation illustrated above is merely one instance of a general transformation
that can be applied to any program: Given a program G as input, the transformation produces
a derivative-computing program G′. The method for constructing G′ is as follows:
– For each variable v of type float used in G, another float variable v′ is introduced.
– Each statement in G of the form “v = exp;”, where exp is an arithmetic expression, is

transformed into “v′ = exp′; v = exp;”, where exp′ is the expression for the derivative of
exp. If exp involves calls to a procedure g, then exp′ may involve calls to both g and g′.

– Each statement in G of the form “return v;” is transformed into “return v′;”.

In general, this transformation can be justified by appealing to the chain rule of differential
calculus.
Example 2 For Example 1, we can demonstrate the correctness of the transformation by
symbolically executing Prod′ for a few iterations, comparing the values of ans′ and ans (as
functions of x) at the start of each iteration of the for-loop, as shown in Figure 1. The loop
maintains the invariant that, at the start of each iteration, ans′(x) = d

dxans(x). ��

182 Thomas W. Reps and Louis B. Rall

enum ArgDesc { CONST, VAR };
class FloatD {
public:
float val′;
float val;
FloatD(ArgDesc,float);

};
// Constructor to convert a constant
// or a value for the independent
// variable to a FloatD
FloatD::FloatD(ArgDesc a, float v){

switch (a) {
case CONST:

val′ = 0.0;
val = v;

break;
case VAR:

val′ = 1.0;
val = v;

break; }
}

FloatD operator+(FloatD a, FloatD b){
FloatD ans;
ans.val′ = a.val′ + b.val′;
ans.val = a.val + b.val;
return ans;

}

FloatD operator*(FloatD a, FloatD b){
FloatD ans;
ans.val′ = a.val * b.val′

+ a.val′ * b.val;
ans.val = a.val * b.val;
return ans;

}

Fig. 2. A differentiation-arithmetic class.

For the computational-differentiation approach, we did not really need to make the as-
sumption that we were given programs f′i for the functions f ′

i , 1≤ i≤ k; instead, the pro-
grams f′i can be generated from the programs fi by applying the same statement-doubling
transformation that was applied to Prod.

In languages that support operator overloading, such as C++, Ada, and Pascal-XSC,
computational differentiation can be carried out by defining a new data type that has fields
for both the value and the derivative, and overloading the arithmetic operators to carry
out appropriate manipulations of both fields [49], along the lines of the definition of the
C++ class FloatD, shown in Figure 2. A class such as FloatD is called a differentiation
arithmetic [50].

The transformation then amounts to changing the types of each procedure’s formal pa-
rameters, local variables, and return value (including those of the fi).3

Example 3 Using class FloatD, the Prod program of Example 1 can be handled as follows:

float f1(float x){. . .} ⇒ FloatD f1(const FloatD &x){. . .}
...

...
float fk(float x){. . .} ⇒ FloatD fk(const FloatD &x){. . .}
float Prod(float x){

float ans = 1.0;
for (int i = 1; i <= k; i++){

ans = ans * fi(x);
}
return ans;

}

⇒

FloatD Prod(const FloatD &x) {
FloatD ans(CONST,1.0); // ans = 1.0
for (int i = 1; i <= k; i++){

ans = ans * fi(x); }
return ans;

}

⇒
float Prod′(float x) {

FloatD xD(VAR,x);
return Prod(xD).val′;

}

3 We have referred to both computational differentiation and computational divided differencing
as “program transformations”, which may conjure up the image of tools that perform source-to-
source rewriting fully automatically. Although this is one possible embodiment, in this paper the
term “transformation” will also include the use of C++ classes in which the arithmetic operators
are overloaded. With the latter approach, rewriting might be carried out by a preprocessor, but
might also be performed by hand, since usually only light rewriting of the program source text
is required.

Computational Divided Differencing and Divided-Difference Arithmetics 183

By changing the types of the formal parameters, local variables, and the return values of
Prod and the fi (and making a slight change to the initialization of ans in Prod), the
program now carries around derivative values (in the val′ field) in addition to performing
all of the work performed by the original program. Because of the C++ overload-resolution
mechanism, the fi procedures invoked in the fourth line of the transformed version of Prod
are the transformed versions of the fi (i.e., the fi of type FloatD→ FloatD).

The value of Prod’s derivative at v is obtained by calling Prod′(v). ��
In a differentiation arithmetic, each procedure in the user’s program, such as Prod and the
fi in Example 3, can be viewed as a box that maps two inputs to two outputs as depicted
below:

� �

�
�

�
�

���

v F F(v)

F(v)Differentiating
version of F F′(v)*w

v

w

Computational
Differentiation

In particular, in each differentiating version of a user-defined or library procedure F,
the lower-right-hand output produces the value F′(v)*w. An input value v for the formal
parameter is treated as a pair (v,1.0). Such boxes “snap together”: when F is composed
with G (and the input is v), the output value on the lower-right-hand side is F′(G(v))*G′(v),
which agrees with the usual expression for the chain rule for the first-derivative operator:

�

�

�

�

�

�

���
v

v

1.0

Differentiating

version of G

G(v)

Computational
Differentiation

G G(v)

G′(v)

�

�

�

�

�

�

���
Differentiating

version of F

Computational
Differentiation

F F(G(v))

F(G(v))

F′(G(v))*G′(v)

The transformation illustrated in Example 1 is not fully general in that it does not yield a
procedure that can be composed with other transformed procedures. To create a composable
transformed procedure, the transformation would, in essence, have to make changes that
mimic all of the actions of the version created in Example 3 using class FloatD: the procedure
would have to take two arguments, x and x′; pass these on to composable transformed
versions of the fi; and return a pair 〈ans, ans′〉, instead of ans′ alone.

The computational-differentiation technique summarized above is what is known as
forward-mode differentiation. When the number of independent variables is much greater
than the number of dependent variables, a different computational-differentiation technique,
reverse mode [20,21,28,36,55], provides theoretically better performance—a greatly reduced
number of computational steps—but at the cost of the need to store or recompute interme-
diate values that affect the final result nonlinearly. Forward mode and reverse mode are the
endpoints of a spectrum of algorithmic techniques; in practice, computational-differentiation
tools optimize runtime and memory requirements by exploiting associativity properties of
the chain rule to permit forward mode and reverse mode to be used in different parts of the
computation [7].

The remainder of the paper concerns the generalization of forward-mode computational
differentiation to forward-mode computational divided differencing; non-forward-mode tech-
niques are outside the scope of the paper.

184 Thomas W. Reps and Louis B. Rall

The availability of overloading makes it possible to implement (forward-mode) compu-
tational differentiation conveniently, by packaging it as a differentiation-arithmetic class, as
illustrated above. The alternative to the use of overloading is to build a special-purpose
preprocessor to carry out the statement-doubling transformation that was illustrated in Ex-
amples 1 and 2. Examples of systems that use the latter approach include ADIFOR [4, 5]
and ADIC [6].

2.1 Limitations of Computational Differentiation

This section discusses certain limitations of the computational-differentiation transforma-
tion. First, it is worthwhile mentioning that the presence of aliasing (e.g., due to pointers
or reference parameters) is not a limitation of computational differentiation (nor of com-
putational divided differencing): The transformations presented above (as well as later in
Sections 3, 5, 6, and 7) work properly in the presence of aliasing (and are said to be alias-
safe [22]).

One limitation of computational differentiation comes from the fact that a program F′(x)
that results from computational differentiation can perform additions and subtractions for
which there are no analogues in the original program F(x). For instance, in program Prod′,
an addition is performed in the statement “ans′ = ans′ * fi(x) + ans * f′i(x);” whereas
no addition is performed in the statement “ans = ans * fi(x);” Consequently, the result of
evaluating F′(x) can be degraded by round-off error even when F(x) is computed accurately.
However, the accuracy of the result from evaluating F′(x) can be verified by performing the
same computation in interval arithmetic [49,50].

Another problem that arises is that the manner in which a function is programmed in-
fluences whether the results obtained from the derivative program are correct. For instance,
for programs that use a conditional expression or conditional statement in which the condi-
tion depends on the independent variable—i.e., where the function is defined in a piecewise
manner—the derivative program may not produce the correct answer.

Suppose that the function F (x) = x2 is programmed using a conditional statement, as
shown in the left side of the box below:

float F(float x){
float ans;
if(x == 1.0) { ans = 1.0; }
else { ans = x*x; }
return ans;

}

⇒

float F′(float x){
float ans′;
float ans;
if(x == 1.0) { ans′ = 0.0; ans = 1.0; }
else { ans′ = x+x; ans = x*x; }
return ans′;

}

Computational differentiation would produce the program shown above on the right.
With this program, F′(1.0) returns 0.0, rather than the correct value of 2.0 (i.e., correct
with respect to the meaning of the program as the mathematical function F (x) = x2) [14].

This phenomenon has been called the branch problem or the if problem for computational
differentiation. A more important example of the branch problem occurs in Gaussian elimi-
nation code, where pivoting introduces branches into the program [2,14,22]. Some additional
problems that can arise with computational differentiation are identified in [14]. A number of
different approaches to these problems have been discussed in the literature [2,14,22,34,54].

Computational divided differencing has some similar (or even worse) problems. All of
these issues are outside the scope of the present paper; the problem of finding appropriate
ways to generalize the aforementioned techniques to handle the problems that arise with
computational divided differencing is left for future work.

Computational Divided Differencing and Divided-Difference Arithmetics 185

3 Computational Divided Differencing

In this paper, we exploit the principle on which computational differentiation is based—
namely, that it is possible to differentiate entire programs, not just expressions—to develop
a variety of new computational divided-differencing transformations. We develop several
transformations that can be applied to numerical programs. One of these corresponds to the
first-divided-difference operator , denoted by � [x0, x1] and defined in Equation (1).

As with the differentiation operator, the problem that we face is that because division
by a small value and subtraction are both operations that amplify accumulated round-off
error, direct use of Equation (1) may lead to highly inaccurate results. In contrast, given
a program that computes a numerical function F (x), our technique for computational first
divided differencing creates a related program that computes F [x0, x1], but without directly
evaluating the right-hand side of Equation (1).

As we show below, the program transformation that achieves this goal is quite similar
to the transformation used in computational-differentiation tools. The transformed program
sidesteps the explicit subtraction and division operations that appear in Equation (1), while
producing answers that are equivalent (from the standpoint of evaluation in real arithmetic).
The program that results thereby avoids many operations that could potentially amplify
round-off error, and hence retains accuracy when evaluated in floating-point arithmetic.

Consider the case in which F (x) = x2 and x0 �= x1:

F [x0, x1] =
F (x0)− F (x1)

x0 − x1
=

x2
0 − x2

1

x0 − x1
= x0 + x1.

That is, the first divided difference can be obtained by evaluating x0 + x1. In general, for
monomials we have:

F (x) c x x2 x3 . . .

F [x0, x1] 0 1 x0 + x1 x2
0 + x0x1 + x2

1 . . .

Turning to programs, suppose that we are given the following program for squaring a number:

float Square(float x){
return x * x;

}

To compute the first divided-difference of Square, we have our choice between:
Square_1DD_naive and Square_1DD:

float Square_1DD_naive(float x0,float x1){
return (Square(x0) - Square(x1))/(x0 - x1);

}

float Square_1DD(float x0,float x1){
return x0 + x1;

}

However, the round-off-error characteristics of Square_1DD are much better than those of
Square_1DD_naive.

The basis for creating expressions and programs that compute accurate divided differ-
ences is to be found in the basic properties of the first-divided-difference operator [35], which
closely resemble those of the first-derivative operator, as shown in Table 1.

The program transformation for performing computational divided differencing can be
explained by means of an example.

Example 4 Suppose that we have a C++ class Poly that represents polynomials, and a
member function Poly::Eval that evaluates a polynomial via Horner’s rule; i.e., it accu-
mulates the answer by repeatedly multiplying by x and adding in the current coefficient,
iterating down from the high-order coefficient:4

4 The paper uses the evaluation of a polynomial in x via Horner’s rule as a running example.
It is well known that Horner’s rule can return inaccurate results when it is used to evaluate
a polynomial in floating-point arithmetic [25, pages 65–67]. Our examples are not meant to
illustrate a way to circumvent this shortcoming. Horner’s rule is used because it is a simple
procedure, which allows various transformations to be illustrated succinctly.

186 Thomas W. Reps and Louis B. Rall

Table 1. Basic properties of the first-derivative and first-divided-difference operators.

First Derivative First Divided Difference [35]

c′ = 0.0 c[x0, x1] = 0.0

x′ = 1.0 x[x0, x1] = 1.0

(c + F)′(x) = F ′(x) (c + F)[x0, x1] = F [x0, x1]

(c ∗ F)′(x) = c ∗ F ′(x) (c ∗ F)[x0, x1] = c ∗ F [x0, x1]

(F + G)′(x) = F ′(x) + G′(x) (F + G)[x0, x1] = F [x0, x1] + G[x0, x1]

(F ∗ G)′(x) = F ′(x) ∗ G(x) + F (x) ∗ G′(x) (F ∗ G)[x0, x1] = [x0, x1] ∗ G(x1) + F (x0) ∗ G[x0, x1](
F
G

)′
(x)=

F ′(x)∗G(x)−F (x)∗G′(x)

G(x)2

(
F
G

)
[x0, x1]=

F [x0, x1]∗G(x1)−F (x1)∗G[x0, x1]
G(x0) ∗ G(x1)

class Poly {
public:
float Eval(float);

private:
int degree;
// Array coeff[0..degree]
float *coeff;

};

// Evaluation via Horner’s rule
float Poly::Eval(float x){

float ans = 0.0;
for (int i = degree; i >= 0; i--) {

ans = ans * x + coeff[i]; }
return ans;

}

A new member function, Poly::Eval_1DD, to compute the first divided difference can be
created by transforming Poly::Eval as shown below:

class Poly {
public:
float Eval(float);
float Eval_1DD(float,float);

private:
int degree;
// Array coeff[0..degree]
float *coeff;

};

float Poly::Eval_1DD(float x0,float x1){
float ans_1DD = 0.0;
float ans = 0.0;
for (int i = degree; i >= 0; i--) {

ans_1DD = ans_1DD * x1 + ans;
ans = ans * x0 + coeff[i]; }

return ans_1DD;
}

��
The transformation used to obtain Eval_1DD from (the text of) Eval is similar to the
computational-differentiation transformation that would be used to create a derivative-
computing program Eval′ (Eval′ appears in Figure 3):
– Eval_1DD is supplied with an additional formal parameter (and the two parameters are

renamed x0 and x1).
– For each local variable v of type float used in Eval, an additional float variable v_1DD

is introduced in Eval_1DD.
– Each statement of the form “v = exp;” in Eval is transformed into “v_1DD = exp[x0,x1];

v = exp0;”, where exp[x0,x1] is the expression for the divided difference of exp, and exp0

is exp with x0 substituted for all occurrences of x.
– Each statement of the form “return v” in Eval is transformed into “return v_1DD”.

One caveat concerning the transformation presented above should be noted: the transfor-
mation applies only to procedures that have a certain special syntactic structure—namely,
the only multiplication operations that depend on the independent variable x must be mul-
tiplications on the right by x. Procedure Eval is an example of a procedure that has this
property.

A different, but similar, transformation can be used if all of the multiplication operations
that depend on the independent variable x are multiplications on the left by x. (This point
is discussed further in Example 8.) It is also possible to give a fully general first-divided-
difference transformation; however, this transformation can be viewed as a special case of
the material presented in Section 5.

Computational Divided Differencing and Divided-Difference Arithmetics 187

class Poly {
public:
float Eval(float);
float Eval_1DD(float,float);
float Eval′(float);

private:
int degree;
// Array coeff[0..degree]
float *coeff;

};

float Poly::Eval_1DD(float x0,float x1){
float ans_1DD = 0.0;
float ans = 0.0;
for (int i = degree; i >= 0; i--) {

ans_1DD = ans_1DD * x1 + ans;
ans = ans * x0 + coeff[i]; }

return ans_1DD;
}

float Poly::Eval′(float x){
float ans′ = 0.0;
float ans = 0.0;
for (int i = degree; i >= 0; i--) {

ans′ = ans′ * x + ans;
ans = ans * x + coeff[i]; }

return ans′;
}

Fig. 3. The result of applying the computational-differentiation and first-divided-difference
transformations to member function Poly::Eval of Example 4.

Alternatively, as with computational differentiation, for languages that support operator
overloading, computational divided differencing can be carried out with the aid of a new
class, say Float1DD, for which the arithmetic operators are appropriately redefined. (We will
call such a class a divided-difference arithmetic.) Computational divided differencing is then
carried out by making appropriate changes to the types of each procedure’s formal parame-
ters, local variables, and return value. Again, definitions of first-divided-difference arithmetic
classes—both for the case of general first divided differences, as well as for the special case
that covers programs like Eval—can be viewed as special cases of the divided-difference
arithmetic classes FloatDD and FloatDDR1 discussed in Sections 5 and 6, respectively.

4 Computational Divided Differencing as a Generalization
of Computational Differentiation

In this section, we explain the sense in which computational divided differencing generalizes
computational differentiation. First, observe that over real numbers,

lim
x1→x0

F [x0, x1] = lim
x1→x0

F (x0)− F (x1)
x0 − x1

= F ′(x0). (3)

However, although Equation (3) holds over reals, it does not hold over floating-point num-

bers: as x1 approaches x0, because of accumulated round-off error, the quantity
F(x0)− F(x1)

x0 − x1
does not , in general, approach F′(x0). (Note the use of Courier Font here; this is a state-
ment about quantities computed by programs.) This is why derivatives cannot be computed
accurately by procedure F′_naive (see box (2)). In contrast, for the programs F[x0, x1] and
F′(x0), we have: limx1→x0 F[x0, x1] = F′(x0).

More precisely, we have equality when x1 equals x0:

F[x0, x0] = F′(x0). (4)

Example 5 To illustrate Equation (4), consider applying the two transformations to mem-
ber function Poly::Eval of Example 4; the result is shown in Figure 3. When formal para-
meters x0, x1, and x all have the same value—say v—then exactly the same operations are
performed by Eval_1DD(v,v) and Eval′(v). ��

188 Thomas W. Reps and Louis B. Rall

Because computations are carried out over floating-point numbers, the programs F[x0, x1]
and F′(x0) are only approximations to the functions that we actually desire. That is, F[x0, x1]
approximates the function F [x0, x1], and F′(x0) approximates F ′(x0). The relationships
among these functions and programs are depicted below:

?

d

dx

� �
�

�� � � �

x1 → x0

x0 − x1

x1→x0 x1−x0 x1→x0

F [x0, x1]

F (x0)−F (x1)

F ’(x0) ≈ F′(x0)

F (x0) ≈ F(x0)

F[x0,x1] F(x0)− F(x1)

Programs and
Program Transformation

Mathematical Functions
and Operators

Computational
Differentiation

Computational
Divided Differencing

Standard
Divided Differencing

In particular, as x1 approaches x0, F[x0, x1] approaches F′(x0). Consequently, a program
produced by a system for computational divided differencing can be used to compute values
of derivatives (in addition to divided differences) by feeding it duplicate actual parameters
(e.g., Eval_1DD(v,v)). In this sense, computational divided differencing can be said to
generalize computational differentiation.

Computational divided differencing suffers from one of the same problems that arises
with computational differentiation—namely that the program F[x0, x1] that results from the
transformation can perform additions and subtractions that have no analogues in the origi-
nal program F(x) (see the discussion in Section 2.1). Consequently, the result of evaluating
F[x0, x1] can be degraded by round-off error even when F(x) is computed accurately. However,
computational divided differencing is no worse in this regard than computational differen-
tiation. Moreover, because of the fact that F[x0, x1] converges to F′(x0) as x1 approaches x0,
if F′(x0) returns a result of sufficient accuracy, then F[x0, x1] will return a result of sufficient
accuracy when |x0 − x1| is small.

5 Higher-Order Computational Divided Differencing

In this section, we show that the idea from Section 3 can be generalized to define a transfor-
mation for higher-order computational divided differencing. To do so, we define a divided-
difference arithmetic that manipulates divided-difference tables. Higher-order divided differ-
ences are divided differences of divided differences, defined recursively as follows:

F [xi]
def= F (xi) (5)

F [x0,x1,. . . ,xn−1,xn] def=

{
(F [x0,x1,. . . ,xn−1]−F [x1,. . . ,xn−1,xn])/(x0−xn) if x0 �=xn

∂
∂z F [z,x1,. . . ,xn−1]

∣∣
z=x0

if x0 =xn

(6)

Higher-order divided differences have numerous applications in interpolation and approxi-
mation of functions [10].

In our context, a divided-difference table for a function F is an upper-triangular matrix
whose entries are divided differences of different orders, as indicated below:⎛⎜⎜⎝

F (x0)
0
0
0

F [x0, x1]
F (x1)

0
0

F [x0, x1, x2]
F [x1, x2]

F (x2)
0

F [x0, x1, x2, x3]
F [x1, x2, x3]

F [x2, x3]
F (x3)

⎞⎟⎟⎠ (7)

Other arrangements of F ’s higher-order divided differences into matrix form are possible.
For example, one could have a lower triangular matrix with the F (xi) running down the

Computational Divided Differencing and Divided-Difference Arithmetics 189

first column. However, the use of the arrangement shown in Equation (7) is key to being
able to use simple notation—i.e., ordinary matrix operations—to describe our methods [44].

It is worthwhile mentioning here that higher-order divided differences are symmetric in
the xk; that is, for any permutation π of the sequence [0, . . . , n],

F [x0, x1, ..., xn] = F [xπ(0), xπ(1), ..., xπ(n)].
Notation that emphasized the order-independence of the xk, such as F{x0, x1, ..., xn}, might
have been employed. However, the arrangement of higher-order divided differences into the
form shown in Equation (7)—together with the use of ordinary matrix operations—imposes
some order on the diagonal elements, say, F (x0), F (x1), . . ., F (xn). Our notation, therefore,
will always reflect this order: for 0 ≤ i ≤ j ≤ n, the (i, j) element of a divided-difference
table whose diagonal elements are F (x0), F (x1), . . ., F (xn) is denoted by F [xi, xi+1, ..., xj],
where the sequence [i, i + 1, . . . , j] is a contiguous subsequence of [0, . . . , n].

We occasionally use [xi,j] as an abbreviation for [xi, ..., xj]. However, the reader should

note that F [x0,2] is not the same as F [x0, x2]. We use � [x0, . . . , xn] to denote the operator
that yields the divided-difference table for a function with respect to points x0, . . . , xn. (We
use � if the points x0, . . . , xn are clear from the context.)

Table 2. Basic properties of two divided-difference operators.
First Divided Difference [35] Divided-Difference Table [44]

c[x0, x1] = 0.0 c [x0, ..., xn] = c ∗ I

x[x0, x1] = 1.0 x [x0, ..., xn] = A[x0,...,xn]

(c+F)[x0,x1] = F [x0, x1] (c+F) [x0, ..., xn] = c ∗ I + F [x0, ..., xn]

(c∗F)[x0,x1] = c ∗ F [x0, x1] (c∗F) [x0, ..., xn] =c ∗ F [x0, ..., xn]

(F +G)[x0,x1] = F [x0, x1] + G[x0, x1] (F +G) [x0,...,xn] =F [x0,...,xn]+G [x0,...,xn]

(F ∗G)[x0,x1]=F [x0,x1]∗G(x1)+F (x0)∗G[x0,x1] (F ∗G) [x0,...,xn] =F [x0,...,xn] ∗ G [x0,...,xn](
F
G

)
[x0,x1]=

F [x0, x1]∗G(x1)−F (x1)∗G[x0, x1]

G(x0) ∗ G(x1)

(
F
G

) [x0, ..., xn]
=

F [x0, ..., xn]

G [x0, ..., xn]

A method for creating accurate divided-difference tables for rational expressions is found in
Opitz [44]. This method is based on the properties of � [x0,...,xn] given in the right-hand
column of Table 2, where
– I denotes the identity matrix.

– A[x0,...,xn] denotes the matrix

⎛⎜⎜⎜⎜⎜⎜⎝

x0 1 0 · · · 0
0 x1 1 · · · 0
...

.
...

0 · · · . . . xn−1 1
0 · · · · · · 0 xn

⎞⎟⎟⎟⎟⎟⎟⎠
– In the entry for (F ∗G) [x0,...,xn], the multiplication operation in F [x0,...,xn]∗G [x0,...,xn]

is matrix multiplication.

– In the entry for
(

F

G

) [x0,...,xn]

, the division operation in
F [x0,...,xn]

G [x0,...,xn]
is matrix division

(i.e.,
P

Q
= P ∗Q−1).

The two columns of Table 2 can be read as recursive definitions for the operations � [x0, x1]
and � [x0,...,xn], respectively. These have straightforward implementations as recursive pro-
grams that walk over an expression tree.

190 Thomas W. Reps and Louis B. Rall

It is easy to verify (by means of induction) that the first and second columns of Table 2
are consistent with each other: in each case, the quantity e[x0, x1] represents the (0,1) entry
of the matrix e [x0,...,xn].

The second column of Table 2 has another interpretation:

Observation 1 [Reinterpretation Principle]. The divided-difference table of an arithmetic
expression e(x) with respect to the n+1 points x0, . . . , xn can be obtained by reinterpreting
e(x) as a matrix expression, where the matrix A[x0,...,xn] is used at each occurrence of the
variable x, and c ∗ I is used at each occurrence of a constant c.

That is, the expression tree for e(x) is unchanged—except at its leaves, where A[x0,...,xn]

is used in place of x, and c ∗ I is used in place of c—but the operators at all internal nodes
are reinterpreted as denoting matrix operations. This observation is due to Opitz [44]. With
only a slight abuse of notation, we can express this as e [x0,...,xn] = e(A[x0,...,xn]).

Using this notation, we can show that the chain rule for the divided-difference operator
� [x0,...,xn] has the following particularly simple form:

(F ◦ G) [x0,...,xn] = (F ◦ G)(A[x0,...,xn]) = F (G(A[x0,...,xn])) = F (G [x0,...,xn]).

Opitz’s idea can be extended to the creation of accurate divided-difference tables for func-
tions defined by programs by overloading the arithmetic operators used in the program
to be matrix operators—i.e., by defining a divided-difference arithmetic that manipulates
divided-difference tables:

Observation 2 [Computational Divided-Differencing Principle]. Rather than computing a
divided-difference table with respect to the points x0, x1, . . ., xn by invoking the program
n+1 times and then applying Equations (5) and (6), we may instead evaluate the program
(once) using a divided-difference arithmetic that overloads arithmetic operations as matrix
operations, substituting A[x0,...,xn] for each occurrence of the formal parameter x, and c ∗ I
for each occurrence of a constant c.

The single invocation of the program using the divided-difference arithmetic will actually
be more expensive than the n + 1 ordinary invocations of the program. The advantage of
using divided-difference arithmetic is not that execution is speeded up because the program
is only invoked once (in fact, execution is slower); the advantage is that the result computed
using divided-difference arithmetic is much more accurate.

Because higher-order divided differences are defined recursively in terms of divided differ-
ences of lower order (cf. Equations (5) and (6)), it would be possible to define an algorithm for
higher-order computational-divided-differencing using repeated applications of lower-order
computational-divided-differencing transformations. However, with each application of the
transformation for computational first divided differencing, the program that results per-
forms (roughly) three times the number of operations that are performed by the program
the transformation starts with. Consequently, this approach has a significant drawback: the
final program that would be created for computing kth divided differences could be O(3k)
times slower than the original program. In contrast, the slow-down factor with the approach
based on Observation 2 is O(k3).

We now sketch how a version of higher-order computational divided differencing based
on Observation 2 can be implemented in C++. Below, we present highlights of a divided-
difference arithmetic class, named FloatDD. We actually make use of two classes:
(i) class FloatDD, the divided-difference arithmetic proper, and
(ii) class FloatV, vectors of xi values.

Computational Divided Differencing and Divided-Difference Arithmetics 191

These classes are defined as follows:

class FloatDD {
public:
int numPts; // Size is numPts-by-numPts
float **divDiffTable; // Two-dimensional upper-triangular array
FloatDD(ArgDesc ad, int N, float v); // N-by-N constant or variable
FloatDD(const FloatV &); // Construct a FloatDD from a FloatV
FloatDD(int N); // Construct a zero-valued FloatDD of size N-by-N
FloatDD& operator+ (const FloatDD &) const; // binary addition
FloatDD& operator- (const FloatDD &) const; // binary subtraction
FloatDD& operator* (const FloatDD &) const; // binary multiplication
FloatDD& operator/ (const FloatDD &) const; // binary division

};

class FloatV {
public:
int numPts;
float *val; // An array of values: val[0]..val[numPts-1]
FloatV(int N, ...); // N points
FloatV(float start, int N, float incr); // N equally spaced points

};

The constructor FloatDD(const FloatV &) plays the role of generating a matrix A[x0,...,xn]

from a vector [x0, . . . , xn] of values for the independent variable.
It is defined as follows:

// Construct a FloatDD from a FloatV
FloatDD::FloatDD(const FloatV &fv) :

numPts(fv.numPts),
divDiffTable(calloc_ut(numPts)) // allocate upper-triangular matrix of zeros

{
for (int i = 0; i < numPts; i++) {

divDiffTable[i][i] = fv.val[i];
if (i < numPts-1) divDiffTable[i][i+1] = 1.0; }

}

The procedure calloc_ut allocates an upper-triangular matrix in such a way that ordinary
array-indexing operations can be used to access the elements; all elements of the matrix are
initialized to zero.

// Allocate upper-triangular matrix of zeros
float **calloc_ut(int n){

int size = (n * (n+1)) / 2;
float *arr = new float[size];
float **a = new float*[n];
for (float *p = arr; p < &arr[size]; p++) *p = 0.0;
float *q = arr;
for (int i = 0; i < n; i++) {

a[i] = q;
q += (n-(i+1)); }

return a;
}

The constructor FloatDD(ArgDesc ad, int N, float v) generates either the matrix A[v,...,v]

of size N-by-N or the matrix v ∗ I of size N-by-N, depending on the value of parameter ad. It
is defined as follows:

192 Thomas W. Reps and Louis B. Rall

FloatDD::FloatDD(ArgDesc ad, int N, float v):
numPts(N),
divDiffTable(calloc_ut(numPts))

{
int i;
switch (ad) {

case CONST:
for (i = 0; i < numPts; i++) {

divDiffTable[i][i] = v; }
break;

case VAR:
for (i = 0; i < numPts; i++) {

divDiffTable[i][i] = v;
if (i < numPts - 1)

divDiffTable[i][i+1] = 1.0; }
break; }

}

The multiplication operator of class FloatDD performs matrix multiplication:

FloatDD& FloatDD::operator* (const FloatDD &fdd) const{
assert(numPts == fdd.numPts);
FloatDD *ans = new FloatDD(numPts);
for (int r = 0; r < numPts; r++) {

for (int c = r; c < numPts; c++) {
float temp = 0.0;
for (int k = r; k <= c; k++) {

temp += divDiffTable[r][k] * fdd.divDiffTable[k][c]; }
ans->divDiffTable[r][c] = temp; }

}
return *ans;

}

The division operator of class FloatDD is implemented using back substitution. That is,
suppose we wish to find the value of A/B (call this value X). X can be found by solving the
system X * B = A. Because the divided-difference tables A and B are both upper-triangular
matrices, this can be done using back substitution:

// Use back substitution
FloatDD& FloatDD::operator/ (const FloatDD &fdd) const{

assert(numPts == fdd.numPts);
assert(NonZeroDiagonal(fdd));
FloatDD *ans = new FloatDD(numPts);
for (int r = 0; r < numPts; r++) {

for (int c = r; c < numPts; c++) {
float temp = 0.0;
for (int k = r; k < c; k++) {

temp += ans->divDiffTable[r][k] * fdd.divDiffTable[k][c]; }
ans->divDiffTable[r][c] =

(divDiffTable[r][c] - temp) / fdd.divDiffTable[c][c]; }
}
return *ans;

}

(8)

Example 6 To illustrate these definitions, consider again procedure Poly::Eval, which
evaluates a polynomial via Horner’s rule.

Computational divided differencing is carried out by changing the types of Eval’s formal
parameters, local variables, and return value from float to FloatDD:

Computational Divided Differencing and Divided-Difference Arithmetics 193

// Evaluation via Horner’s rule
float Poly::Eval(float x){

float ans = 0.0;
for (int i = degree; i >= 0; i--){

ans = ans * x + coeff[i];
}
return ans;

}

⇒

// Evaluation via Horner’s rule
FloatDD Poly::Eval(const FloatDD &x){

FloatDD ans(x.numPts); // ans = 0.0
for (int i = degree; i >= 0; i--){

ans = ans * x + coeff[i];
}
return ans;

}

The transformed procedure can be used to generate the divided-difference table for the
polynomial P (x) = 2.1 ∗ x3 − 1.4 ∗ x2 − .6 ∗ x + 1.1 with respect to the (unevenly spaced)
points 3.0, 3.01, 3.02, 3.05 by performing the following operations:

Poly *P = new Poly(4,2.1,-1.4,-0.6,1.1);
FloatV x(4,3.0,3.01,3.02,3.05);
FloatDD A(x); // Corresponds to A[3.0,3.01,3.02,3.05]

FloatDD fdd = P->Eval(A);

(9)

We now present some empirical results that illustrate the advantages of the computational-
divided-differencing method. In this experiment, we worked with the polynomial P (x) =
2.1 ∗ x3 − 1.4 ∗ x2 − .6 ∗ x + 1.1, and performed computations on a Sun SPARCstation
20/61 running SunOS 5.6. Programs were compiled with the egcs-2.91.66 version of g++
(egcs-1.1.2 release). The experiment compared the standard method for generating divided-
difference tables—namely, the recursive definition given by Equation (5) and the first line
of Equation (6)—against the overloaded version of procedure Poly::Eval from Example 6
(which was invoked using code like the fragment shown in box (9)) using single-precision
and double-precision floating-point arithmetic.

In each of the examples shown below, the values used for the (unevenly spaced) points
x0, x1, x2, and x3 are shown on the left. (Differences are indicated in boldface.)

Computational Divided Differencing Standard Divided Differencing
(single-precision arithmetic) (single-precision arithmetic)

x0 :
x1 :
x2 :
x3 :

3.0
4.0
5.0
7.0

⎛⎜⎜⎝
43.4 67.3

110.7
23.8

114.9
225.6

2.1
32.2

211.5
648.6

⎞⎟⎟⎠
⎛⎜⎜⎝

43.4 67.3
110.7

23.8
114.9
225.6

2.09999
32.2

211.5
648.6

⎞⎟⎟⎠
x0 :
x1 :
x2 :
x3 :

3.0
3.01
3.02
3.05

⎛⎜⎜⎝
43.4 47.8752

43.8787
17.563

48.2265
44.361

2.1
17.668

48.9332
45.829

⎞⎟⎟⎠
⎛⎜⎜⎝

43.4 47.8749
43.8787

17.5858
48.2266
44.361

1.59073
17.6653
48.9332
45.829

⎞⎟⎟⎠
x0 :
x1 :
x2 :
x3 :

3.0
3.001
3.002
3.005

⎛⎜⎜⎝
43.4 47.7175

43.477
17.5063
47.7525
43.4955

2.1
17.5168
47.8226
43.6389

⎞⎟⎟⎠
⎛⎜⎜⎝

43.4 47.7177
43.4477

15.2886
47.7483
43.4955

754.685
19.0621
47.8245
43.6389

⎞⎟⎟⎠
x0 :
x1 :
x2 :
x3 :

3.0
3.0001
3.0002
3.0005

⎛⎜⎜⎝
43.4 47.7017

43.4048
17.5006
47.7052
43.4095

2.1
17.5017
47.7122
43.4238

⎞⎟⎟⎠
⎛⎜⎜⎝

43.4 47.6945
43.4048

3.62336
47.6952
43.4095

117520
62.379

47.7202
43.4238

⎞⎟⎟⎠
In particular, because P is a cubic polynomial whose high-order coefficient is 2.1, the proper
value of P [x0, x1, x2, x3]—the third divided difference of P—is 2.1, not 117,520! (Compare
the entries that appear in the upper-right-hand corners of the fourth pair of divided-difference
tables shown above.)

194 Thomas W. Reps and Louis B. Rall

Switching to double-precision arithmetic, and continuing to move the points closer to-
gether, we obtain

Computational Divided Differencing Standard Divided Differencing
(double-precision arithmetic) (double-precision arithmetic)

x0 :
x1 :
x2 :
x3 :

3.0
3.0001
3.0002
3.0005

⎛⎜⎜⎝
43.4 47.7018

43.4048
17.5006
47.7053
43.4095

2.1
17.5017
47.7123
43.4239

⎞⎟⎟⎠
⎛⎜⎜⎝

43.4 47.7018
43.4048

17.5006
47.7053
43.4095

2.10121
17.5017
47.7123
43.4239

⎞⎟⎟⎠
x0 :
x1 :
x2 :
x3 :

3.0
3.00001
3.00002
3.00005

⎛⎜⎜⎝
43.4 47.7002

43.4005
17.5001
47.7005
43.4001

2.1
17.5002
47.7012
43.4024

⎞⎟⎟⎠
⎛⎜⎜⎝

43.4 47.7002
43.4005

17.5001
47.7005
43.4001

1.89257
17.5002
47.7012
43.4024

⎞⎟⎟⎠
x0 :
x1 :
x2 :
x3 :

3.0
3.000001
3.000002
3.000005

⎛⎜⎜⎝
43.4 47.7

43.4
17.5

47.7001
43.4001

2.1
17.5

47.7001
43.4002

⎞⎟⎟⎠
⎛⎜⎜⎝

43.4 47.7
43.4

17.5077
47.7001
43.4001

−1640.17
17.4995
47.7001
43.4002

⎞⎟⎟⎠
Finally, with either single-precision or double-precision arithmetic, when we set all of the
input values to 3.0, we obtain

Computational Divided Differencing Standard Divided Differencing

x0 :
x1 :
x2 :
x3 :

3.0
3.0
3.0
3.0

⎛⎜⎜⎝
43.4 47.7

43.4
17.5
47.7
43.4

2.1
17.5
47.7
43.4

⎞⎟⎟⎠
⎛⎜⎜⎝

43.4 NaN
43.4

NaN
NaN
43.4

NaN
NaN
NaN
43.4

⎞⎟⎟⎠
With the standard divided-differencing method, division by 0 occurs and yields the ex-

ceptional value NaN. In contrast, computational divided differencing produces values for P ’s
first, second, and third derivatives. More precisely, each kth divided-difference entry in the
computational-divided-differencing table equals

1
k!

d kP (x)
dxk

∣∣∣∣
x = 3.0

(10)

The k = 1 case was already discussed in Section 4, where we observed that computational
first divided differencing could be used to compute first derivatives. ��
Example 7 [30]. Suppose that we wish to compute the future value of n monthly payments,
each of 1 unit, paid at the end of each month into a savings account that compounds interest
at the rate of α per month (where α is a small positive value and n is a positive integer). This
answers the question “How many dollars are accumulated after n months, when you deposit
$1 per month for n months, into a savings account that pays annual interest at the rate of
(12× α× 100)%, compounded monthly?” Future value can be computed by the function

FutureValue(α, n) def=
((1 + α)n − 1)

α
. (11)

However, this can also be written as FutureValue(α, n) =
((1 + α)n − 1n)

(1+α)− 1
, and thus is equal

to the following first-divided difference of the power function:
FutureValue(α, n) = (xn)[1+α, 1].

The latter quantity can be computed to nearly full accuracy using computational divided
differencing by computing (xn) [1+α,1], and then extracting the (0, 1) entry. For instance,
we can start with the following procedure power, which computes xn via repeated squaring
and multiplication by x, according to the bits of argument n:

Computational Divided Differencing and Divided-Difference Arithmetics 195

const unsigned int num_bits = sizeof(unsigned int)*8;
float power(float x, unsigned int n) {

unsigned int mask = 1 << (num_bits - 1);
float ans = 1.0;
for (unsigned int i = 0; i < num_bits; i++) {

ans = ans * ans;
if (mask & n)

ans = ans * x;
mask >>= 1;

}
return ans;

}

By changing the types of power’s formal parameters, local variables, and return value, we
create a version that computes a divided-difference table:

FloatDD power(FloatV &x, unsigned int n) {
unsigned int mask = 1 << (num_bits - 1);
FloatDD ans(CONST, 2, 1.0); // ans = 1.0
for (unsigned int i = 0; i < num_bits; i++) {
ans = ans * ans;
if (mask & n)

ans = ans * x;
mask >>= 1;

}
return ans;

}

The transformed procedure can be used to compute the desired computation to nearly full
accuracy by calling the procedure FutureValue that is defined below:

float FutureValue(float alpha, unsigned int n) {
float w[2] = { 1+alpha, 1 };
FloatV v(2, w);
return power(v,n).divDiffTable[0][1];

}

We now present some empirical results that illustrate the advantages of this approach. In
this experiment, we performed computations using single-precision floating-point arithmetic
on a Sony VAIO PCG-Z505JSK (650 MHz Intel Pentium III processor) running Windows
2000. Programs were compiled with Microsoft Visual C++ 6.0. Table 3 shows the future
values of $1 deposits made for 360 months, as computed via Equation (11) versus procedure
FutureValue, for a variety of interest rates. ��

6 A Special Case

A divided-difference table for a function F can be thought of as a (redundant) represen-
tation of an interpolating polynomial for F . For instance, if you have a divided-difference
table T (and also know the appropriate vector of values x0, x1, . . ., xn), you can explicitly
construct the Newton form of the interpolating polynomial for F according to the following
definition [10, page 197]:

pn(x) =
n∑

i=0

F [x0, . . . , xi] ∗
i−1∏
j=0

(x− xj) (12)

Note that to be able to create the Newton form of the interpolating polynomial for F via
Equation (12), only the first row of divided-difference table T is required to be at hand—i.e.,
the values F [x0, . . . , xi], for 0 ≤ i ≤ n—together with the values of x0, x1, . . ., xn. This
observation suggests that we should develop an alternative divided-difference arithmetic
that builds up and manipulates only first rows of divided-difference tables. We call this
divided-difference arithmetic FloatDDR1 (for Divided-Difference Row 1). The motivation

196 Thomas W. Reps and Louis B. Rall

Rate Equation (11) FutureValue
8% 1490.36 1490.36
4% 694.045 694.048
2% 492.713 492.722
0.8% 406.692 406.718
0.4% 382.4 382.422
0.2% 370.934 370.986
0.08% 364.142 364.34
0.04% 362.595 362.165
0.02% 361.505 361.08
0.008% 360.882 360.432
0.004% 360.668 360.216
0.002% 360.56 360.108
0.0008% 386.238 360.046
0.0004% 386.238 360.023
0.0002% 257.492 360.008

Table 3. The future values of $1 deposits made for 360 months, as computed via Equa-
tion (11) versus procedure FutureValue. (Differences are indicated in boldface.)

for this approach is that FloatDDR1 operations will be much faster than FloatDD ones,
because FloatDD operations must manipulate upper-triangular matrices, whereas FloatDDR1
operations involve only simple vectors.

To achieve this, we define class FloatDDR1 as follows:

class FloatDDR1 {
friend FloatDDR1& operator+ (const FloatDDR1 &, const float);
friend FloatDDR1& operator+ (const FloatDDR1 &, const FloatV &);
friend FloatDDR1& operator+ (const float, const FloatDDR1 &);
friend FloatDDR1& operator+ (const FloatV &, const FloatDDR1 &);
friend FloatDDR1& operator- (const FloatDDR1 &, const float);
friend FloatDDR1& operator- (const FloatDDR1 &, const FloatV &);
friend FloatDDR1& operator- (const float, const FloatDDR1 &);
friend FloatDDR1& operator- (const FloatV &, const FloatDDR1 &);
friend FloatDDR1& operator* (const FloatDDR1 &, const float);
friend FloatDDR1& operator* (const FloatDDR1 &, const FloatV &);
friend FloatDDR1& operator* (const float, const FloatDDR1 &);
friend FloatDDR1& operator* (const FloatV &, const FloatDDR1 &);
friend FloatDDR1& operator/ (const FloatDDR1 &, const float);
friend FloatDDR1& operator/ (const FloatDDR1 &, const FloatV &);
public:
int numPts;
float *divDiffTable; // One-dimensional array of divided differences
FloatDDR1(int N) // Construct a zero-valued FloatDDR1 of length N

: numPts(N), divDiffTable(new float[numPts])
{ }

FloatDDR1& operator+ (const FloatDDR1 &) const; // binary addition
FloatDDR1& operator- (const FloatDDR1 &) const; // binary subtraction

};

Compared with class FloatDD, class FloatDDR1 is somewhat impoverished: we can add or
subtract two arbitrary FloatDDR1’s; however, because we do not have full divided-difference
tables available, we cannot multiply two arbitrary FloatDDR1’s; nor do we have the full
A[x0,...,xn] matrices that are used at each occurrence of the independent variable. We finesse
these difficulties by limiting the other operations of class FloatDDR1 to those defined by the
friend functions indicated in the class definition given above: (i) addition, subtraction, and

Computational Divided Differencing and Divided-Difference Arithmetics 197

multiplication on either side by a float or a FloatV; (ii) division on the right by a float
or a FloatV.

The operations that involve a float argument c have their “obvious” meanings, if one
bears in mind that a float value c serves as a stand-in for a full matrix c*I. For the ad-
dition (subtraction) operations, c is only added to (subtracted from) the divDiffTable[0]
entry of the FloatDDR1 argument. For the multiplication (division) operations, all of the
divDiffTable entries are multiplied by (divided by) c.

In the operations that involve a FloatV argument, the FloatV value serves as a stand-in
for a full A[x0,...,xn] matrix. For instance, the operator for multiplication on the right by a
FloatV can be thought of as performing a form of matrix multiplication—but specialized
to produce only the first row of the output divided-difference table (and to use only values
that are available in the given FloatDDR1 and FloatV arguments):

FloatDDR1& operator* (const FloatDDR1 &fddr1, const FloatV &fv){
FloatDDR1 *ans = new FloatDDR1(fddr1.numPts);
ans->divDiffTable[0] = fddr1.divDiffTable[0] * fv.val[0];
for (int c = 1; c < fddr1.numPts; c++) {
ans->divDiffTable[c] = fddr1.divDiffTable[c-1] + fddr1.divDiffTable[c] * fv.val[c];
}
return *ans;

}

It might be thought that the operator for multiplication on the left by a FloatV does not
have the proper values available in the given FloatV and FloatDDR1 arguments to produce
the first row of the product divided-difference table as output. (In particular, the second
argument, which is of type FloatDDR1, is a row vector, yet we want to produce a row vector
as the result.) However, it is easy to show that divided-difference matrices are commutative:

F ∗G = (F ∗G) = (G ∗ F) = G ∗ F (13)

Consequently, the operator for multiplication on the left by a FloatV can be treated as if
the FloatV were on the right:

FloatDDR1& operator* (const FloatV &fv, const FloatDDR1 &fddr1){
return fddr1 * fv;

}

As with class FloatDD, the division operator is implemented using a form of back substitution
— specialized here to compute just what is needed for the first row of the divided-difference
table:

FloatDDR1& operator/ (const FloatDDR1 &fddr1, const FloatV &fv){
FloatDDR1 *ans = new FloatDDR1(fddr1.numPts);
ans->divDiffTable[0] = fddr1.divDiffTable[0] / fv.val[0];
for (int c = 1; c < fddr1.numPts; c++) {

ans->divDiffTable[c] = (fddr1.divDiffTable[c] - ans->divDiffTable[c-1])
/ fv.val[c]; }

return *ans;
}

Because only a limited set of arithmetic operations is available for objects of class FloatDDR1,
this divided-difference arithmetic can only be applied to procedures that have a certain
special syntactic structure, namely ones that are “accumulative” in the independent variable
(with only “right-accumulative” quotients). In other words, the procedure must never perform
arithmetic operations (other than addition or subtraction) on two local variables that both
depend on the independent variable.

Example 8 The procedure Poly::Eval for evaluating a polynomial via Horner’s rule is an
example of a procedure of the right form. Consequently, an overloaded version of Poly::Eval
that uses FloatDDR1 arithmetic can be written as shown below:

198 Thomas W. Reps and Louis B. Rall

// Evaluation via Horner’s rule
float Poly::Eval(float x){

float ans = 0.0;
for (int i = degree; i >= 0; i--){

ans = ans * x + coeff[i];
}
return ans;

}

// Evaluation via Horner’s rule
FloatDDR1 Poly::Eval(const FloatV &x){

FloatDDR1 ans(x.numPts); // ans = 0.0
for (int i = degree; i >= 0; i--){

ans = ans * x + coeff[i];
}
return ans;

}

In Section 3, Example 4 discussed the procedure Poly::Eval_1DD, a transformed version
of Poly::Eval that computes the value of the first divided difference of a polynomial with
respect to two values, x0 and x1. With the way that the overloaded operations are defined
for class FloatDDR1, when the actual parameter supplied for x is a FloatV of length two con-
sisting of x0 and x1, the procedure FloatDDR1 Poly::Eval(const FloatV &x) performs
essentially the same steps as Poly::Eval_1DD. One slight difference is that, in addition to
returning the value of the first divided difference, the FloatDDR1 version also returns the
result of evaluating the polynomial on x0. Another difference is that with class FloatDDR1,
because of our trick for handling multiplication by a FloatV on the left (cf. Equation (13)
and the discussion that follows), FloatDDR1 arithmetic can be used with programs that
contain multiplications by the independent variable x on the left as well as on the right.
(The transformation used in Example 4 could also be enhanced in this fashion.) ��

Some empirical results that illustrate the advantages of FloatDDR1 arithmetic in a useful
application are presented at the end of Section 8.

As with the methods discussed in Sections 3 and 5, FloatDDR1 arithmetic can be used to
produce values of interest for computational differentiation. For instance, suppose we have
transformed procedure F:

float F(float x);⇒ FloatDDR1 F(const FloatV &x);

When all of the xi values in the actual parameter supplied for FloatV x are the same value,
say x, then the FloatDDR1 value returned as the output holds the Taylor coefficients for the
expansion of F at x (cf. formula (10)). Thus, the FloatV divided-difference arithmetic gen-
eralizes previously known techniques for producing accurate Taylor coefficients for functions
defined by programs [49].

If we attempt to use FloatDDR1 arithmetic in a procedure that is not “accumulative” in
the independent variable, with only “right-accumulative” quotients, the overload-resolution
mechanism of the C++ compiler will detect and report a problem.

In the future-value calculation performed in Example 7, we cannot apply FloatDDR1
arithmetic to procedure power because the statement “ans = ans * ans;” multiplies two
local variables that both depend on the independent variable x. Consequently, power is
not accumulative in the independent variable. In the case of Microsoft Visual C++ 6.0,
the following error message is issued: binary ‘*’ : no operator defined which takes
a left-hand operand of type ‘class FloatDDR1’.

7 Multidimensional Computational Divided Differencing

In this section, we define a third divided-differencing arithmetic that allows one to perform
computational divided differencing of functions of several variables.

7.1 Background Discussion

As background to the material that will be discussed in Section 7.2, let us reiterate a few
points concerning the divided-difference tables that result from computational divided dif-
ferencing of functions of a single variable. In the following discussion, we assume that the

Computational Divided Differencing and Divided-Difference Arithmetics 199

divided-difference table in question has been constructed with respect to some known col-
lection of values x0, x1, . . ., xn.

As mentioned at the beginning of Section 6, a divided-difference table can be thought
of as a (redundant) representation of an interpolating polynomial. For instance, if you have
a divided-difference table T (and know the appropriate vector of values x0, x1, . . ., xn, as
well), you can explicitly construct the interpolating polynomial in Newton form by using
the values in the first row of T in accordance with Equation (12). One of the consequences
of this point is so central to what follows in Section 7.2 that it is worthwhile to state it
explicitly and to introduce some helpful notation:

Observation 3 [Representation Principle]. A divided-difference table T is a finite repre-
sentation of a function Func[[T]] defined by Equation (12). (Note that if F = Func[[T]], then
T = F .) Given two divided-difference tables, T1 and T2, that are defined with respect to
the same set of points x0, x1, . . ., xn, the operations of matrix addition, subtraction, mul-
tiplication, and division applied to T1 and T2 yield representations of the sum, difference,
product, and quotient, respectively, of Func[[T1]] and Func[[T2]].

In other words, the operations of class FloatDD provide ways to (i) instantiate repre-
sentations of functions of one variable (by evaluating programs in which floats have been
replaced by FloatDDs), and (ii) perform operations on function representations (i.e., by
addition, multiplication, etc. of FloatDD values).

We also restate the Computational Divided-Differencing Principle (Observation 2), adding
the additional remark given in the second paragraph:

Observation 4 [Computational Divided-Differencing Principle Redux]. Rather than com-
puting a divided-difference table with respect to the points x0, x1, . . ., xn by invoking the
program n+1 times and then applying Equations (5) and (6), we may instead evaluate the
program (once) using a divided-difference arithmetic that overloads arithmetic operations
as matrix operations, substituting A[x0,...,xn] for each occurrence of the formal parameter x,
and c ∗ I for each occurrence of a constant c.

Furthermore, this principle can be applied to divided-difference tables for functions on
any field (because addition, subtraction, multiplication, and division operations are required,
together with additive and multiplicative identity elements).

7.2 Computational Divided Differencing of Functions of Several Variables

We now consider the problem of defining an appropriate notion of divided differencing for
a function F of several variables. Observation 3 provides some guidance, as it suggests that
the generalized divided-difference table for F that we are trying to create should also be
thought of as a representation of a function of several variables that interpolates F . Such a
generalized computational divided-differencing technique will be based on the combination
of Observations 3 and 4.

Because we have already used the term higher-order to refer generically to 2nd, 3rd,
. . ., nth divided differences, we use the term higher-kind to refer to the generalized divided-
difference tables that arise with functions of several variables. In the remainder of this section,
we make use of an alternative notation for the divided-difference operator � [x0,...,xn]:

DD1
[x0,...,xn][[F]] def= F [x0,...,xn].

We use DD1[[F]] when the xi are understood, and abbreviate ranges of variables in the usual
way, e.g., DD1

[x0,3][[F]] = DD1
[x0,x1,x2,x3][[F]] = F [x0,x1,x2,x3]. The notation DD1[[�]] refers

to divided-difference tables of kind 1 (the kind we are already familiar with from Section 5,
namely FloatDD values). Below, we use DD2[[�]] to refer to divided-difference tables of
kind 2; in general, we use DDk[[�]] to refer to divided-difference tables of kind k.

200 Thomas W. Reps and Louis B. Rall

To understand the basic principle that underlies our approach, consider the problem of
creating a surface that interpolates a two-variable function F (x, y) with respect to a grid
formed by three coordinate values x0, x1, x2 in the x-dimension, and four coordinate values
y0, y1, y2, y3 in the y-dimension.

The clearest way to explain the technique in common programming-language terminology
involves currying F . That is, instead of working with F : float × float → float , we work
with F : float → float → float . We can create (a representation of) an interpolating surface
for F (i.e., a divided-difference table of kind 2, denoted by DD2

[x0,2],[y0,3][[F]]) by building
a divided-difference table of kind 1 using the functions F (x0), F (x1), and F (x2), each of
which is of type float → float , as the “interpolation points”. (This idea is a specific instance
of the very general approach to surface approximation via the tensor-product construction
given in [11, Chapter XVII].)

Note that this process requires that we be capable of performing addition, subtrac-
tion, multiplication, and division of functions. However, each of the functions F (x0), F (x1),
and F (x2) is itself a one-argument function for which we can create a representation,
namely by building the divided-difference tables DD1

[y0,3][[F (x0)]], DD1
[y0,3][[F (x1)]], and

DD1
[y0,3][[F (x2)]] (with respect to the coordinate values y0, y1, y2, and y3). By Observa-

tion 4, the arithmetic operations on functions F (x0), F (x1), and F (x2) needed to cre-
ate DD2

[x0,2],[y0,3][[F]] can be carried out by performing matrix operations on the matrices
DD1

[y0,3][[F (x0)]], DD1
[y0,3][[F (x1)]], and DD1

[y0,3][[F (x2)]]. For instance,

DD1
[y0,3][[F [x0, x1]]] = DD1

[y0,3][[
F (x0)−F (x1)

x0−x1
]] =

DD1
[y0,3][[F (x0)]]−DD1

[y0,3][[F (x1)]]
x0 − x1

(14)

In what follows, it is convenient to express functions using lambda notation (i.e., in λz.exp,
z is the name of the formal parameter, and exp is the function body). For instance, λx.λy.x
denotes the curried two-argument function (of type float → float → float) that merely
returns its first argument. For our purposes, the advantage of lambda notation is that it
provides a way to express the anonymous one-argument function that is returned when a
curried two-argument function is supplied a value for its first argument (e.g., (λx.λy.x)(x0)
returns λy.x0).

In short, the idea is that a divided-difference table of kind 2 for function F is a matrix
of matrices (see also [53, Figure 4]):

DD2
[x0,2],[y0,3][[F]] = DD1

[x0,2][[λx.DD1
[y0,3][[F (x)]]]]

=

⎛⎜⎝DD1
[y0,3][[F (x0)]] DD1

[y0,3][[F [x0, x1]]]

DD1
[y0,3] [[F (x1)]]

DD1
[y0,3][[F [x0, x1, x2]]]

DD1
[y0,3] [[F [x1, x2]]]

DD1
[y0,3] [[F (x2)]]

⎞⎟⎠
It is instructive to consider some instances of DD2

[x0,2],[y0,3][[F]] for various F ’s:

Example 9 Consider the function λx.λy.x. For 0 ≤ i ≤ 2, we have

DD1
[y0,3][[(λx.λy.x)(xi)]] = DD1

[y0,3][[λy.xi]] =

⎛⎜⎜⎝
xi 0

xi

0
0

xi

0
0
0

xi

⎞⎟⎟⎠
and, for 0 ≤ i ≤ 1, we have

Computational Divided Differencing and Divided-Difference Arithmetics 201

DD1
[y0,3][[(λx.λy.x)[xi, xi+1]]] = DD1

[y0,3][[
(λx.λy.x)(xi)− (λx.λy.x)(xi+1)

xi − xi+1
]]

= DD1
[y0,3][[

λy.xi − λy.xi+1

xi − xi+1
]] = DD1

[y0,3][[λy.1]] =

⎛⎜⎜⎝
1 0

1
0
0
1

0
0
0
1

⎞⎟⎟⎠
Consequently, we have that: DD2

[x0,2],[y0,3][[λx.λy.x]] =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
x0 0

x0

0
0

x0

0
0
0

x0

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0
1

0
0
1

0
0
0
1

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0
0

0
0
0

0
0
0
0

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

x1 0
x1

0
0

x1

0
0
0

x1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0
1

0
0
1

0
0
0
1

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

x2 0
x2

0
0

x2

0
0
0

x2

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

��
Example 10 Consider the function λx.λy.y. For 0 ≤ i ≤ 2, we have

DD1
[y0,3][[(λx.λy.y)(xi)]] = DD1

[y0,3][[λy.y]] =

⎛⎜⎜⎝
y0 1

y1

0
1

y2

0
0
1

y3

⎞⎟⎟⎠
and, for 0 ≤ i ≤ 1, we have

DD1
[y0,3][[(λx.λy.y)[xi, xi+1]]] = DD1

[y0,3][[
(λx.λy.y)(xi)− (λx.λy.y)(xi+1)

xi − xi+1
]]

= DD1
[y0,3][[

λy.y − λy.y

xi − xi+1
]] = DD1

[y0,3][[λy.0]] =

⎛⎜⎜⎝
0 0

0
0
0
0

0
0
0
0

⎞⎟⎟⎠
Consequently, we have that: DD2

[x0,2],[y0,3][[λx.λy.y]] =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
y0 1

y1

0
1

y2

0
0
1

y3

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0
0

0
0
0

0
0
0
0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0
0

0
0
0

0
0
0
0

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

y0 1
y1

0
1

y2

0
0
1

y3

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0
0

0
0
0

0
0
0
0

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

y0 1
y1

0
1

y2

0
0
1

y3

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

��

202 Thomas W. Reps and Louis B. Rall

Moreover, Observation 4 tells us that divided-difference tables for functions of two variables
can be built up by means of a divided-difference arithmetic that operates on matrices of
matrices. That is, we can build up divided-difference tables of kind 2 for more complex
functions of x and y by using operations on matrices of matrices, substituting DD2[[λx.λy.x]]
for each occurrence of the formal parameter x in the function, and DD2[[λx.λy.y]] for each
occurrence of the formal parameter y.
Example 11 For the function λx.λy.(x × y), DD2[[λx.λy.(x× y)]] can be created by mul-
tiplying the matrices DD2[[λx.λy.x]] and DD2[[λx.λy.y]] from Equations (15) and (16), re-
spectively:
DD2[[λx.λy.(x× y)]] = DD2[[(λx.λy.x)× (λx.λy.y)]] = DD2[[λx.λy.x]]×DD2[[λx.λy.y]] =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
x0y0 x0

x0y1

0
x0

x0y2

0
0

x0

x0y3

⎞⎟⎟⎠
⎛⎜⎜⎝

y0 1
y1

0
1

y2

0
0
1

y3

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0
0

0
0
0

0
0
0
0

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

x1y0 x1

x1y1

0
x1

x1y2

0
0

x1

x1y3

⎞⎟⎟⎠
⎛⎜⎜⎝

y0 1
y1

0
1

y2

0
0
1

y3

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

⎞⎟⎟⎠
⎛⎜⎜⎝

x2y0 x2

x2y1

0
x2

x2y2

0
0

x0

x2y3

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note, for example, that the (0,1) entry in the above matrix, namely⎛⎜⎜⎝

y0 1
y1

0
1

y2

0
0
1

y3

⎞⎟⎟⎠
was obtained via the calculation⎛⎜⎜⎝

x0 0
x0

0
0

x0

0
0
0

x0

⎞⎟⎟⎠×
⎛⎜⎜⎝

0 0
0

0
0
0

0
0
0
0

⎞⎟⎟⎠+

⎛⎜⎜⎝
1 0

1
0
0
1

0
0
0
1

⎞⎟⎟⎠×
⎛⎜⎜⎝

y0 1
y1

0
1

y2

0
0
1

y3

⎞⎟⎟⎠+

⎛⎜⎜⎝
0 0

0
0
0
0

0
0
0
0

⎞⎟⎟⎠×
⎛⎜⎜⎝

0 0
0

0
0
0

0
0
0
0

⎞⎟⎟⎠ (17)

and not by the use of Equation (14), which involves a matrix subtraction, a scalar subtrac-
tion, and a scalar division. By sidestepping the explicit subtraction and division operations,
expression (17) avoids the potentially disastrous magnification of round-off error that can
occur with floating-point arithmetic. ��

The principle illustrated in Example 11 gives us the machinery that we need to perform
computational divided differencing for bivariate functions defined by programs. As usual,
computational divided differencing is performed by changing the types of formal parameters,
local variables, and return values to the type of an appropriate divided-difference arithmetic.

Furthermore, these ideas can be applied to a function F with an arbitrary number of
variables: when F has k variables, DDk[[F]], F ’s divided-difference table of kind k, is a
matrix of matrices of . . . of matrices nested to depth k. Currying with respect to the first
parameter of F “peels off” one dimension; DDk[[F]] is a matrix whose entries are divided-
difference tables of kind k−1 (i.e., matrices of matrices of . . . of matrices nested to depth
k−1). For instance, the diagonal entries are the divided-difference tables of kind k−1 for the
(k−1)-parameter functions F (x0), F (x1), . . ., F (xn) (i.e., DDk−1[[F (x0)]], DDk−1[[F (x1)]],
. . ., DDk−1[[F (xn)]]).

To implement this approach in C++, we define two classes and one class template:

Computational Divided Differencing and Divided-Difference Arithmetics 203

– Class template template <int k> class DivDiffArith can be instantiated with a
positive value k to represent divided-difference tables of kind k. Each object of class
DivDiffArith<k> has links to sub-objects of class DivDiffArith<k-1>.

– Class DivDiffArith<0> represents the base case; DivDiffArith<0> objects simply hold
a single float.

– Class IntVector, a vector of int’s, is used to describe the number of points in each
dimension of the grid of coordinate points.

Excerpts from the definitions of these classes are shown below:

template <int k> class DivDiffArith {
public:
int numPts;
DivDiffArith<k-1> **divDiffTable; // Two-dimensional upper-triangular array
DivDiffArith(const FloatV &v, const IntVector &grid, int d);
DivDiffArith(float, const IntVector &grid); //constant; shape conforms to grid
DivDiffArith(float, const DivDiffArith<k-1> &dda);//constant; shape conforms to dda
DivDiffArith<k>& operator+ (const DivDiffArith<k> &) const;//binary addition
DivDiffArith<k>& operator- (const DivDiffArith<k> &) const;//binary subtraction
DivDiffArith<k>& operator* (const DivDiffArith<k> &) const;//binary multiplication
DivDiffArith<k>& operator/ (const DivDiffArith<k> &) const;//binary division

};

class DivDiffArith<0> {
public:
float value;
DivDiffArith(float v = 0.0); // Default constructor
DivDiffArith(const FloatV &v, const IntVector &grid, int d);
DivDiffArith<0>& operator+ (const DivDiffArith<0> &) const;// binary addition
DivDiffArith<0>& operator- (const DivDiffArith<0> &) const;// binary subtraction
DivDiffArith<0>& operator* (const DivDiffArith<0> &) const;// binary multiplication
DivDiffArith<0>& operator/ (const DivDiffArith<0> &) const;// binary division

};

class IntVector {
public:
int numPts;
int *val; // An array of values: val[0]..val[numPts-1]
IntVector();
IntVector(int N, ...); // Construct IntVector given N values
IntVector& operator< < (const int i); // left shift
};

The operations of class DivDiffArith<k> are overloaded in a fashion similar to those of
FloatDD. (FloatDD is essentially identical to DivDiffArith<1>.) For instance, the overloaded
multiplication operator performs matrix multiplication:

template <int k>
DivDiffArith<k>& DivDiffArith<k>::operator* (const DivDiffArith<k> &dda) const{

assert(numPts == dda.numPts);
DivDiffArith<k> *ans = new DivDiffArith<k>(numPts);
for (int r = 0; r < numPts; r++) {

for (int c = r; c < numPts; c++) {
DivDiffArith<k-1> temp((float)0.0, divDiffTable[r][c]); // temp = 0.0
for (int j = r; j <= c; j++) {

temp += divDiffTable[r][j] * dda.divDiffTable[j][c];
}
ans->divDiffTable[r][c] = temp;

}
}
return *ans;

}

204 Thomas W. Reps and Louis B. Rall

Class DivDiffArith<k> has two constructors for creating a DivDiffArith<k> object from
a float constant. They differ only in their second arguments (an IntVector versus a
DivDiffArith<k>), which are used to determine the appropriate dimensions to use at each
level in the nesting of matrices.

Suppose that in the procedure on which computational divided differencing is to be
carried out, variable z is the independent variable associated with argument position d+1.
To generate an appropriate DivDiffArith<k> object for z for a given set of grid values z0,
. . ., zm, a FloatV with the values z0, . . ., zm is created, and then passed to the following
DivDiffArith<k> constructor:

template <int k>
DivDiffArith<k>::DivDiffArith(const FloatV &v, const IntVector &grid, int d):

numPts(grid.val[0]),
divDiffTable(calloc_ut< k >(numPts))

{
assert(grid.val[d] == v.numPts);
IntVector tail = grid < < 1;
for (int r = 0; r < numPts; r++) {

for (int c = r; c < numPts; c++) {
divDiffTable[r][c] = DivDiffArith<k-1>((float)0.0,tail); }

}
if(d == 0) {

DivDiffArith<k-1> one((float)1.0, tail);
for (int i = 0; i < numPts; i++) {

divDiffTable[i][i] = DivDiffArith<k-1>(v.val[i],tail);
if(i < numPts - 1) { divDiffTable[i][i+1] = one; } }

}
else {

for (int i = 0; i < numPts; i++) {
divDiffTable[i][i] = DivDiffArith<k-1>(v,tail,d-1); } }

}

Example 12 The following code fragment generates two DivDiffArith<2> values, x and y,
which correspond to the matrices shown in Equations (15) and (16), respectively:

IntVector grid(2,3,4);
FloatV fv_x(3,x0,x1,x2);
DivDiffArith<2> x(fv_x,grid,0); // argument position 1
FloatV fv_y(4,y0,y1,y2,y3);
DivDiffArith<2> y(fv_y,grid,1); // argument position 2

��
Example 13 Consider a C++ class BivariatePoly that represents bivariate polynomials,
and a member function BivariatePoly::Eval that evaluates a polynomial via a bivariate
version of Horner’s rule:

class BivariatePoly {
public:
float Eval(float,float);

private:
int degree1,degree2;
//Array coeff[0..degree1][0..degree2]
float **coeff;

};

//Evaluation via bivariate Horner’s rule
float BivariatePoly::Eval(float x, float y){

float ans = 0.0;
for (int i = degree1; i >= 0; i--){

float temp = 0.0;
for (int j = degree2; j >= 0; j--){

temp = temp * y + coeff[i][j]; }
ans = ans * x + temp;

}
return ans;

}

Similar to what has been done in Examples 4, 5, 6, and 8, computational divided differencing
is carried out on this version of Eval by changing the types of its formal parameters, local
variables, and return value from float to DivDiffArith<2>.

Computational Divided Differencing and Divided-Difference Arithmetics 205

// Evaluation via bivariate Horner’s rule
DivDiffArith<2> BivariatePoly::Eval(const DivDiffArith<2>, const DivDiffArith<2> &y)
{ DivDiffArith<2> ans(0.0,x); // ans = 0.0

for (int i = degree1; i >= 0; i--){
DivDiffArith<2> temp(0.0,y); // temp = 0.0
for (int j = degree2; j >= 0; j--){

temp = temp * y + coeff[i][j]; }
ans = ans * x + temp;

}
return ans;

}

To use this procedure to create a divided-difference table of kind 2 for a given variable P of
type BivariatePoly*, with respect to the 3-by-4 grid {x0,x1,x2} × {y0,y1,y2,y3}, we would
generate the IntVector grid and DivDiffArith<2> values x and y as shown in Example 12,
and then invoke “P->Eval(x,y);” ��

In general, if there are k independent variables (i.e., k dimensions), and vi is the number
of sample coordinate values for the ith dimension, where 1 ≤ i ≤ k, each value of type

DivDiffArith<k> will use space
k∏

i=1

vi(vi + 1)
2

. Compared with the time required for the

original program, the slow-down factor for the DivDiffArith<k> version is bounded by
O(

∏k
i=1 v3

i).
One final point concerning costs: by generalizing the grid descriptors slightly, it is possi-

ble to devise an even more general divided-differencing arithmetic that is heterogeneous in
shape with respect to different argument positions. By “heterogeneous”, we mean that full
two-dimensional (upper-triangular) divided-difference tables could be provided for some ar-
gument positions, while other argument positions could just provide a single row of divided
differences (i.e., one-dimensional, FloatDDR1-like tables). By this means, when a procedure
body is “accumulative” in certain of its formal parameters but not others, it would be pos-
sible to tailor the divided-differencing version of the procedure to improve its efficiency. (In
the case of DivDiffArith<2> BivariatePoly::Eval, it would be possible to specify that
both argument positions provide FloatDDR1-like tables.)

8 Paige’s Work on Finite Differencing of Computable Expressions

Starting in the mid-1970s, Paige studied how finite-differencing transformations of applica-
tive set-former expressions could be exploited to optimize loops in very-high-level languages,
such as SETL [47]. These ideas were implemented in his RAPTS system [46]. Some of the
techniques that Paige explored have their roots in earlier work by Earley [12,13].

Independently of and contemporaneously with Paige, similar loop-optimization methods
targeted toward very-high-level set-theoretic languages were investigated by Fong and Ull-
man [15–17]. More recently, Liu and Stoller have used some extensions of these ideas to
optimize array computations [37] and recursive programs [38]. Liu et al. have also shown
how such transformations can be applied to derive algorithms for incremental-computation
problems (i.e., problems in which the goal is to maintain the value of some function F (x) as
the input x undergoes small changes) [39,40].

The basic idea for optimizing SETL loops is described as a generalization of strength
reduction, an idea attributed to John Cocke from the 1960s, whereby a loop is transformed
so that a multiplication operation in the loop is eliminated in favor of an addition, as shown
below:

206 Thomas W. Reps and Louis B. Rall

i = ...;
while (...) {

... i*c ...;
i = i + delta;

}

⇒

i = ...;
T = i*c; // T depends on i
deltaT = delta*c;
while (...) {

... T ...; // T replaces i*c
i = i + delta; // change to i
T = T + deltaT // update of T

}

This transformation improves the running time of the loop if the cost of the additions
performed by the transformed loop are less than the cost of the multiplications performed
in the original loop. In [9], Cocke and Schwartz presented a variety of strength-reduction
transformations for use in optimizing compilers.

Paige’s work on loop optimization in SETL was based on the observation that a similar
transformation could be applied to loops that involve set-former expressions. In this trans-
formation, an expensive set-former expression in a loop is replaced by a set-initialization
statement (placed before the loop) together with a set-update operation (placed inside the
loop):

A = ...;
while (...) {

... {x ∈ A | x%2 == 0} ...;
d = ...;
A = A ∪ {d};

}

⇒

A = ...;
T = {x ∈ A | x%2 == 0}; // T depends on A
while (...) {

... T ...; // T replaces the set former
d = ...;
A = A ∪ {d}; // change to A
if (d%2 == 0) T = T ∪ {d}; // update of T

}

In the transformed program shown above on the right, the expression {x ∈ A | x%2 == 0}
in the loop is replaced by a use of T. Because the statement “A = A ∪ {d};” may alter the
value of variable A, just after this statement a new statement is introduced: “if (d%2 == 0)
T = T ∪ {d};”. The latter statement updates the value of variable T to have the same value
that the expression {x ∈ A | x%2 == 0} has when evaluated with the new value of variable
A. In Paige’s terminology, the code fragment if (d%2 == 0) T = T∪ {d}; is called a post-
derivative of T = {x ∈ A | x%2 == 0}; with respect to the change A = A∪ {d};. Similarly,
a code fragment for updating variable T that is placed before the change A = A ∪ {d}; is
called a prederivative.

Of more direct relevance to the topic of the present paper is the discussion in Paige’s
papers in which he points out affinities between his work, on the one hand, and differentiation
and finite differencing of numerical functions, on the other hand. In particular, the (forward)
finite difference of a function F with respect to h is defined as follows:

∆hF (x) def= F (x + h)− F (x).
Paige and Koenig describe the relationship between their SETL finite-differencing methods
and numerical finite-difference methods as follows [47, pages 403–404]:

«It is interesting to note that the origins of our method may be traced back to the finite
difference techniques introduced by the English mathematician Henry Briggs in the sixteenth
century. His method, which can be used to generate a sequence of polynomial values p(x0),
p(x0 +h), p(x0 +2h), . . ., hinges on the following idea. For a given polynomial p(x) of degree
n and an increment h, the first difference polynomial

p1(x) = p(x + h)− p(x)
is of degree n− 1 or less, the second difference polynomial

p2(x) = p1(x + h)− p1(x)

Computational Divided Differencing and Divided-Difference Arithmetics 207

is of degree n−2 or less, . . ., and, finally, pn(x) must be a constant. Thus, to tabulate
successive values of p(x) starting with x = x0, we can perform these two steps:

1. Calculate initial values for p(x0), p1(x0), . . ., pn(x0) and store them in t(1), t(2), . . .,
t(n+1).

2. Generate the desired polynomial table by iterating over the following code block:
print x, t(1); $ print x and p(x)
t(1) := t(1) + t(2); $ place new values for
t(2) := t(2) + t(3); $ p(x), p1(x), . . ., pn−1(x)
· · · $ into
t(n) := t(n) + t(n + 1); $ t(1), t(2), . . ., t(n).
x := x + h; $

Note that Briggs’s method requires only n additions in step 2 to compute each new polyno-
mial value, while Horner’s rule to compute a fresh polynomial value costs n additions and
n multiplications.»

They relate Briggs’s method to strength reduction in the following passage [47, pages 404–
405]:

«Although Cocke’s technique does not treat polynomials as special objects, strength
reduction is sufficiently powerful to transform a program involving repeated calculations of
a polynomial according to Horner’s rule into an equivalent program that essentially uses the
more efficient finite difference method of Briggs. Indeed, this is a surprising and important
result that demonstrates that the success of polynomial evaluation by differencing results
from properties of the elementary operations used to form polynomials rather than from
properties exclusive to polynomials. In other words, Cocke’s method works because the
following distributive and associative laws hold for sums and products:

(i± delta) ∗ c ⇒ i ∗ c± delta ∗ c;
(i± delta) + c ⇒ (i + c)± delta.

In [9] Cocke and Schwartz extend this idea to show how reduction in strength (which we call
finite differencing) applies to a wide range of arithmetic operations that exhibit appropriate
distributive properties.»

Later in the paper, after Paige and Koenig have introduced their rules for finite dif-
ferencing of set-former expressions with respect to changes in argument values (an oper-
ation that they sometimes call “differentiation”), they return to the discussion of Briggs’s
method [47, page 421]:

«Profitable differentiation of an expression f can sometimes be supported by differen-
tiating f together with a chain of auxiliary expressions (as in Briggs’s first, second, . . .,
difference polynomials . . .). Thus, the prederivative ∇−E〈x +:= delta;〉 of the nth degree
polynomial E = P (x) is

E +:= P1(x)
where P1(x) is the first difference polynomial. However, for the prederivative code above
to be inexpensive, we must also differentiate the second, third, . . ., nth difference polyno-
mials, denoted Ei = Pi(x), i = 2..n. To realize Briggs’s efficient technique, we consider
the extended prederivative (of expressions ordered carefully into a “differentiable chain”)
∇−En−1, . . . , E1, E〈x +:= delta;〉 that expands into

E +:= E1; E1 +:= E2; . . . En−1 +:= En; »
Essentially all of the material that Paige and Koenig present in their paper to relate their
work to Briggs’s method has been quoted above. However, a few details about the derivation
of Briggs’s method were not spelled out in their treatment, which we now attempt to rectify.
We will show below that computational divided differencing supplies a clean way to handle
an important step in the derivation for which what Paige and Koenig say is ambiguous.

208 Thomas W. Reps and Louis B. Rall

The initial program for tabulating a polynomial at a collection of equally spaced points
can be written in C++ as follows:5

void Poly::Tabulate(float start, int numPoints, float h){
float x = start;
float y;
for (int i = 1; i <= numPoints; i++) { // Tabulation loop

y = Eval(x);
cout < < x < < ": " < < y < < endl;
x += h;

}
}

In the program shown above, Eval is the member function of class Poly that evaluates a
polynomial via Horner’s rule (see Section 3), of type float Poly::Eval(float x);

The intention of Paige and Koenig is to transform procedure Poly::Tabulate into some-
thing like the following version:

void Poly::Tabulate(float start, int numPoints, float h){
float x = start;
float y;
float E = Eval(start); // Call on Eval hoisted out of the loop
float E1 = ???; // Unspecified initialization

· · ·
float En−1 = ???;
float En = ???;
for (int i = 1; i <= numPoints; i++) { // Tabulation loop

y = E;
cout < < x < < ": " < < y < < endl;
E += E1; // Extended prederivative w.r.t. x += h;
E1 += E2;
· · ·

En−1 += En;
x += h;

}
}

However, as indicated by the question marks in the above code, Paige and Koenig do not
state explicitly how they plan to arrive at the proper initialization code that is to be placed
just before the loop in the transformed program. It is unclear whether they intend to gen-
erate the values E1, E2, . . ., En−1, En by evaluating polynomial P at start, start+h, . . .,
start+(n-1)*h, start+n*h and then create the Ei via subtraction operations, or whether
they intend to generate the finite-difference polynomials P1, P2, . . ., Pn−1, Pn symbolically
and then apply each of them to start. The former method can lead to very inaccurate re-
sults (see below), whereas the latter method requires that a substantial amount of symbolic
manipulation be performed to generate the Pi. However, the divided-difference arithmetic
FloatDDR1 gives us an easy way to create suitable initialization code that produces accurate
values for the Ei. This initialization code consists of three steps:
– Create a FloatV of equally spaced points, starting at start and separated by h, where

the number of points is one more than the degree of the polynomial.
– Introduce a single call on the member function

FloatDDR1 Poly::Eval(const FloatV &x);
to create the first row of the divided-difference table for the polynomial with respect to
the given FloatV.

5 It should be pointed out that in practice it is better to code the statement in the loop that
changes the value of x as “x = start + i * h;”, rather than as “x += h;”, so that small errors
in h do not accumulate in x due to repeated addition. We have chosen to use the latter form to
emphasize the similarities between Tabulate and the two earlier strength-reduction examples.

Computational Divided Differencing and Divided-Difference Arithmetics 209

– Convert the resulting FloatDDR1 (which holds divided-difference values) into the first row
of a finite-difference table for the polynomial by multiplying each entry by an appropriate
adjustment factor (i.e., the ith entry of the finite-difference table, where 0 ≤ i ≤ n, is
i! ∗ hi ∗ P[x0, x1, . . . , xi] [10, Lemma 4.1]).

This initialization method is used in the version of Tabulate shown below. (In this version
of Tabulate, the Ei are renamed diffTable[i].)

void Poly::Tabulate(float start, int numPoints, float h){
float x = start;
float y;
// Create accurate divided-difference table
FloatV fv(x, degree+1, h);
FloatDDR1 fddr1 = Eval(fv); // Calls FloatDDR1 Poly::Eval(const FloatV &);
// Convert divided-difference entries to finite-difference entries
float *diffTable(new float[degree+1]);
float adjustment = 1.0;
for (int i = 0; i <= degree; i++) {

diffTable[i] = fddr1.divDiffTable[i] * adjustment;
adjustment *= (h * (i+1));

}
for (int i = 1; i <= numPoints; i++) { // Tabulation loop

y = diffTable[0];
cout < < x < < ": " < < y < < endl;
for (int j = 0; j < degree; j++) { // Prederivative w.r.t. x += h;

diffTable[j] += diffTable[j+1]; }
x += h;

}
}

Empirical Results: Tabulation of a Polynomial via Briggs’s Method.
We now present some empirical results that illustrate the advantages of the final version
of Poly::Tabulate presented above. Again, we work with the polynomial P (x) = 2.1 ∗
x3 − 1.4 ∗ x2 − .6 ∗ x + 1.1, and perform computations using single-precision floating-point
arithmetic on a Sun SPARCstation 20/61 running SunOS 5.6. Programs were compiled with
the egcs-2.91.66 version of g++ (egcs-1.1.2 release) with optimization at the -O1 level.

The final version of Poly::Tabulate uses the divided-difference arithmetic FloatDDR1
in the initialization step that creates the initial finite-difference vector diffTable. An al-
ternative way to generate diffTable is to evaluate polynomial P at start, start+h, . . .,
start+(n-1)*h, start+n*h and then create diffTable via subtraction operations, accord-
ing to the standard definition [10, page 214]. However, the latter way of generating diffTable
involves subtraction operations, and hence may magnify any round-off errors in the n + 1
values computed for P. In contrast, the method using computational divided differencing
yields a way to create a more accurate initial finite-difference table.

Evaluate Comp. Div. Diff. Standard FD
via Horner + Briggs + Briggs

x P(x) P(x) P(x)
0.0000 1.10000 1.10000 1.10000
0.0001 1.09994 1.09994 1.09994
0.0002 1.09988 1.09988 1.09988

.
0.9998 1.19942 1.19941 19844.3
0.9999 1.19971 1.19970 19850.3
1.0000 1.20000 1.19999 19856.2

Time (milliseconds) 7.64 5.62 5.49

210 Thomas W. Reps and Louis B. Rall

To give a concrete illustration of the benefits, the table on the right shows what happens
when P (x) is evaluated at the 10,001 points in the interval [0.0, 1.0] with a grid spacing of
.0001. (Differences are indicated in boldface.) The numbers that appear in the rightmost
column for P(.9998), P(.9999), and P(1.0000) are not typographical errors. What happens
is that round-off errors in the computation of the initial finite-difference table via the stan-
dard method causes the table to be initialized to 1.1, −5.99623e-05, −1.19209e-07, and
1.19209e-07. In contrast, the initial values produced via the method based on computational
divided differencing are 1.1, −6.0014e-05, −2.79874e-08, and 1.26e-11. After 10,000 itera-
tions of the Briggs calculation, accumulated errors have caused the values in the rightmost
column to diverge widely from the correct ones.

Overall, the method based on computational divided differencing is far more accurate
than the one in which the vector needed for Briggs’s method is obtained by subtraction
operations (and only 2% slower). Furthermore, the results from the method based on com-
putational divided differencing are nearly as accurate as those obtained by reevaluating the
polynomial at each point, but the reevaluation method is 36% slower.

9 Other Related Work

Computational Differentiation. Computational differentiation is a well-established area of
numerical analysis, with its own substantial literature [3, 22,23,48,57].

As discussed in Section 4, computational divided differencing is a generalization of com-
putational differentiation: a program resulting from computational divided differencing can
be used to obtain derivatives (as well as divided differences), whereas a program resulting
from computational differentiation can only produce derivatives (and not divided differ-
ences).

As already mentioned in Section 2, the computational-differentiation technique that was
summarized there is what is known as forward-mode (first-order) differentiation. A dif-
ferent computational-differentiation technique for first-order differentiation, reverse mode
[20, 21, 28, 36, 55], provides theoretically better performance—a greatly reduced number of
computational steps—but at the cost of the need to store or recompute intermediate values
that affect the final result nonlinearly. It is possible to develop a reverse-mode version of
(first-order) computational divided differencing, although it is only in special circumstances
that it offers the same potential savings in operations performed that reverse mode achieves
for (first-order) computational differentiation:

– Just as forward-mode computational divided differencing generalizes forward-mode com-
putational differentiation, reverse-mode computational divided differencing generalizes
reverse-mode computational differentiation: when divided differencing involves coincid-
ing pairs (e.g., x0 coincides with x1, y0 coincides with y1, etc.), then reverse-mode com-
putational divided differencing computes the first derivative.

– Viewing computational differentiation from the more general perspective of computa-
tional divided differencing provides some insight into the source of the advantage of
reverse-mode computational differentiation. Without going into details, the advantage
can be said to come from the fact that the “degenerate case” of reverse-mode computa-
tional divided differencing—reverse-mode computational differentiation—has a number
of common subexpressions (and such common subexpressions do not arise in the case
of forward-mode computational differentiation). Thus, the advantage of reverse mode
comes from exploiting these symmetries, which lowers the execution cost.

– In the case of reverse-mode computational divided differencing when the divided differ-
encing involves no coinciding pairs, then there are no common subexpressions to take
advantage of. Forward mode has no symmetries to exploit either, so in this case, reverse-
mode first-order computational divided differencing does not offer the potential savings
in operations performed that reverse-mode computational differentiation offers.

Computational Divided Differencing and Divided-Difference Arithmetics 211

– However, in the case of reverse-mode computational divided differencing when there is
at least one coinciding pair (i.e., x0 coincides with x1, or y0 coincides with y1, etc.) then
there are symmetries that can be exploited to create savings in operations performed,
compared with forward mode (which still has no symmetries to exploit). Thus, in prin-
ciple, one could build a reverse-mode computational divided differencing tool that is
theoretically faster than a forward-mode computational divided differencing tool, when
divided differencing involves one or more coinciding pair.

Other Work on Accurate Divided Differencing. The program-transformation techniques for
creating accurate divided differences described in this paper are based on a 1964 result of
Opitz’s [44], which was later rediscovered in 1980 by McCurdy [42] and again in 1998 by
one of us (Reps). However, Opitz and McCurdy both discuss how to create accurate divided
differences only for expressions. In this paper, the idea has been applied to the creation of
accurate divided differences for functions defined by programs.

McCurdy, and later Kahan and Fateman [31] and Rall and Reps [51], have looked at
ways to compute accurate divided differences for library functions (i.e., sin, cos, exp, etc.).

Kahan and Fateman have also investigated how similar techniques can be used to avoid
unsatisfactory numerical answers when evaluating formulas returned by symbolic-algebra
systems. In particular, their work was motivated by the observation that naive evaluation of
a definite integral

∫ b

a
f(x) dx can sometimes produce meaningless answers: When a symbolic-

algebra system produces a closed-form solution for the indefinite integral
∫

f(x) dx, say
G(x), the result of the computation G(b)−G(a) may have no significant digits. Kahan and
Fateman show that divided differences can be used to develop accurate numerical formulas
that sidestep this problem.

One of the techniques developed by McCurdy for computing accurate divided-difference
tables involved first computing just the first row of the table and then generating the rest of
the entries by a backfilling algorithm. He studied the conditions under which this technique
maintained sufficient accuracy. However, his algorithm for accurately computing the first row
of the divided-difference table was based on a series expansion of the function, rather than
a divided-difference arithmetic, such as the FloatDDR1 arithmetic developed in Section 6.

Divided-difference arithmetic for first divided differences has also been called slope arith-
metic, and an interval version of it has been investigated previously as a way to obtain
an interval enclosure for the range of a function evaluated over an interval [35, 52, 59]. It
has been shown that interval slope arithmetic can yield tighter enclosures than methods
based on derivatives [35, 52, 59]. Zuhe and Wolfe have also shown that a form of interval
divided-difference arithmetic involving second divided differences can provide even tighter
interval enclosures [59]. In the present paper, we have confined ourselves to point (non-
interval) divided-difference arithmetics, but have explored the use of a divided-difference
arithmetic for divided differences of arbitrary order (originally due to Opitz [44]). We have
shown how to extend the latter divided-difference arithmetic to the case of multivariate func-
tions involving a fixed, but arbitrary, number of variables, and have also proposed various
specializations of it, which would improve runtime efficiency in certain situations.
Other Work on Controlling Round-Off Error in Numerical Computations. Computational
differentiation and computational divided differencing are methods for controlling round-off
error that can arise in two types of numerical computations. Other work aimed at controlling
round-off error in numerical computations includes interval-arithmetic methods for verifying
the accuracy of computed results, which have been developed for many basic numerical
computations [24, 25], as well as the work on remainder differential algebra, which can be
viewed as a way of extending higher-order computational differentiation so that the resulting
program also computes an interval remainder term [41].
Other Work that Exploits Operator Overloading. Representing particular sequences (such as
arithmetic progressions) by compact terms, and using them as mathematical entities with

212 Thomas W. Reps and Louis B. Rall

appropriate overloaded arithmetic operations has been generalized to geometric progressions,
descending factorials, etc. [1,32]. In Section 8, we showed how a divided-difference arithmetic
provides a method for accurately initializing a finite-difference table for a polynomial. The
methods described in [1, 32] provide alternative initialization methods; for instance, the
example from Section 8 could be handled using Karczmarczuk’s approach by evaluating the
polynomial P (x) = 2.1 ∗ x3 − 1.4 ∗ x2 − .6 ∗ x + 1.1 in a “sequence arithmetic” in which
the argument x is an arithmetic sequence represented by a pair x = (x0,Dx), standing for
[x0, x0 + Dx, x0 + 2Dx, . . .], where Dx is some constant. However, in a more complicated
sequence y = (y0,Dy), Dy is itself allowed to be a sequence (z0,Dz), and the overall top-
level sequence y can be reconstructed through partial sums. For a sequence generated by a
polynomial, Dy is allowed to have deeper nested structure.

For instance, the evaluation of y = P (x) using sequence arithmetic, with x = (x0,Dx) =
(0, 0.0001), would yield y = (1.1,Dy), where Dy = (−6.0014e-05,DDy), where DDy =
(−2.79874e-08,DDDy), where DDDy = 1.26e-11 //a constant, at last. . .
The four values 1.1, −6.0014e-05, −2.79874e-08, and 1.26e-11 are the four values of the
accurate initial finite-difference table.

Acknowledgments

We are grateful for discussions with C. Bischof, C. de Boor, J. O’Brien, W. Kahan, and
R. Zippel about various aspects of the work. Example 1 is due to R. Zippel [58]; Example 7
was suggested by W. Kahan [30]. The observation in Section 9 that the methods from [1,32]
provide an alternative to the use of a divided-difference arithmetic for accurately initializing
a finite-difference table for a polynomial (cf. Section 8) is due to one of the referees of [53].

References

1. O. Bachmann, P. S. Wang, and E. Zima: Chains of recurrences — a method to expedite
the evaluation of closed form functions. In Proc. of ISSAC 1994: Int. Symp. on Symb.
and Alg. Comp., 242–249, New York, ACM Press, 1994.

2. T. Beck and H. Fischer: The if-problem in automatic differentiation. J. Comp. and
Appl. Math., 50:119–131, 1994.

3. M. Berz, C. Bischof, G. F. Corliss, and A. Griewank, editors: Computational Differenti-
ation: Techniques, Applications, and Tools. Soc. for Indust. and Appl. Math., Philadel-
phia, PA, 1996.

4. C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland: ADIFOR: Generating
derivative codes from Fortran programs. Scientific Programming, 1(1):11–29, 1992.

5. C. Bischof, A. Carle, P. Khademi, and A. Mauer: ADIFOR 2.0: Automatic differentiation
of Fortran 77 programs. IEEE Comp. Sci. and Eng., 3:18–32, 1996.

6. C. Bischof, L. Roh, and A. Mauer: ADIC: An extensible automatic differentiation tool
for ANSI-C. Software — Practice and Experience, 27(12):1427–1456, 1997.

7. C. H. Bischof and M. R. Haghighat: Hierarchical approaches to automatic differentiation.
In Berz et al. [3], 83–94, 1996.

8. D. Bjørner, A. P. Ershov, and N. D. Jones, editors: Partial Evaluation and Mixed Compu-
tation: Proc. of the IFIP TC2 Workshop on Partial Evaluation and Mixed Computation.
North-Holland, New York, 1988.

9. J. Cocke and J. T. Schwartz: Programming Languages and Their Compilers: Preliminary
Notes, 2nd Rev. Version. Courant Inst. of Math. Sci., New York Univ., New York, 1970.

10. S. D. Conte and C. de Boor: Elementary Numerical Analysis: An Algorithmic Approach,
2nd. Ed. McGraw-Hill, New York, 1972.

11. C. de Boor: A Practical Guide to Splines, volume 27 of Appl. Math. Sciences. Springer-
Verlag, New York, 1978.

Computational Divided Differencing and Divided-Difference Arithmetics 213

12. J. Earley: High-level operations in automatic programming. In Symp. on Very High
Level Lang., New York, ACM Press, April 1974.

13. J. Earley: High-level iterators and a method for automatically designing data structure
representation. J. Comp. Lang., 1(4):321–342, 1976.

14. H. Fischer: Special problems in automatic differentiation. In Griewank and Corliss [23],
43–50, 1992.

15. A. Fong: Elimination of common subexpressions in very high level languages. In Symp.
on Princ. of Prog. Lang., 48–57, January 1977.

16. A. Fong: Inductively computable constructs in very high level languages. In Symp. on
Princ. of Prog. Lang., 21–28, January 1979.

17. A. Fong and J. Ullman: Induction variables in very high level languages. In Symp. on
Princ. of Prog. Lang., 104–112, January 1976.

18. Y. Futamura: Partial evaluation of computation process – an approach to a compiler-
compiler. Higher-Order and Symb. Comp., 12(4), 1999.
Reprinted from Systems � Computers � Controls 2(5), 1971.

19. H. H. Goldstine: A History of Numerical Analysis. Springer-Verlag, 1977.
20. A. Griewank: On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathe-

matical Programming: Recent Developments and Applications, 83–108. Kluwer Academic
Press, Boston, MA, 1989.

21. A. Griewank: The chain rule revisited in scientific computing. SIAM News, 24, 1991.
22. A. Griewank: Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-

entiation, volume 19 of Frontiers in Applied Mathematics. Soc. for Indust. and Appl.
Math., Philadelphia, PA, 2000.

23. A. Griewank and G. F. Corliss, editors: Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. Soc. for Indust. and Appl. Math., Philadelphia, PA,
1992.

24. R. Hammer, M. Hocks, U. Kulisch, and D. Ratz: Numerical Toolbox for Verified Comput-
ing I: Basic Numerical Problems, volume 21 of Springer Ser. in Comp. Math. Springer,
New York, 1993.

25. R. Hammer, M. Hocks, U. Kulisch, and D. Ratz: C++ Toolbox for Verified Computing
I: Basic Numerical Problems. Springer, New York, 1995.

26. S. Horwitz and T. Reps: The use of program dependence graphs in software engineering.
In Int. Conf. on Softw. Eng., 392–411, May 1992.

27. S. Horwitz, T. Reps, and D. Binkley: Interprocedural slicing using dependence graphs.
Trans. on Prog. Lang. and Syst., 12(1):26–60, January 1990.

28. M. Iri: Simultaneous computation of functions, partial derivatives and estimates of
rounding errors: Complexity and practicality. Japan J. Appl. Math., 1(2):223–252, 1984.

29. N. D. Jones, C. K. Gomard, and P. Sestoft: Partial Evaluation and Automatic Program
Generation. Prentice-Hall International, 1993.

30. W. Kahan: Personal communication to Thomas Reps and Louis Rall. September 2000.
31. W. Kahan and R. J. Fateman: Symbolic computation of divided differences. Unpub-

lished; see http://www.cs.berkeley.edu/∼fateman/papers/divdiff.pdf, 1985.
32. J. Karczmarczuk: Traitement paresseux et optimisation des suites numeriques. In Proc.

of JFLA 2000, 17–30, 2000.
33. J. Karczmarczuk: Functional differentiation of computer programs. Higher-Order and

Symb. Comp., 14(1):35–57, 2001.
34. R. B. Kearfott: Automatic differentiation of conditional branches in an operator over-

loading context. In Berz et al. [3], 75–81, 1996.
35. R. Krawczyk and A. Neumaier: Interval slopes for rational functions and associated

centered forms. SIAM J. Numer. Anal., 22(5):604–616, June 1985.
36. S. Linnainmaa: Taylor expansion of the accumulated rounding error. BIT, 16(1):146–

160, 1976.

214 Thomas W. Reps and Louis B. Rall

37. Y. A. Liu and S. D. Stoller: Loop optimization for aggregate array computations. In
Int. Conf. on Comp. Lang., May 1998.

38. Y. A. Liu and S. D. Stoller: From recursion to iteration: What are the optimizations?
In Workshop on Part. Eval. and Sem.-Based Prog. Manip., 73–82, January 2000.

39. Y. A. Liu, S. D. Stoller, and T. Teitelbaum: Discovering auxiliary information for
incremental computation. In Symp. on Princ. of Prog. Lang., 157–170, January 1996.

40. Y. A. Liu and T. Teitelbaum: Systematic derivation of incremental programs. Sci. of
Comp. Program., 24:1–39, 1995.

41. K. Makino and M. Berz: Remainder differential algebras and their applications. In Berz
et al. [3], 63–74, 1996.

42. A. C. McCurdy: Accurate computation of divided differences. Ph.D. diss. and Tech.
Rep. UCB/ERL M80/28, Univ. of Calif.–Berkeley, CA, 1980.

43. T. Mogensen: The application of partial evaluation to ray-tracing. Master’s thesis,
Datalogisk Institut, Univ. of Copenhagen, Copenhagen, Denmark, 1986.

44. G. Opitz: Steigungsmatrizen. Zeitschrift für Angewandte Mathematik und Mechanik,
44:T52–T54, 1964. In German. In English at:
http://www.cs.wisc.edu/wpis/papers/opitz.zamm64.ps.

45. K. J. Ottenstein and L. M. Ottenstein: The program dependence graph in a software
development environment. In Softw. Eng. Symp. on Practical Softw. Dev. Environments,
177–184, 1984.

46. R. Paige: Transformational programming – Applications to algorithms and systems. In
Symp. on Princ. of Prog. Lang., 73–87, New York, ACM Press, January 1983.

47. R. Paige and S. Koenig: Finite differencing of computable expressions. Trans. on Prog.
Lang. and Syst., 4(3):402–454, July 1982.

48. L. Rall: Automatic Differentiation: Techniques and Applications, Lecture Notes in Com-
puter Science, Vol. 120. Springer, 1981.

49. L. B. Rall: Differentiation and generation of Taylor coefficients in Pascal-SC. In U.W.
Kulisch and W.L. Miranker, editors, A New Approach to Scientific Computation, 291–
309. Academic Press, New York, 1983.

50. L. B. Rall: Point and interval differentiation arithmetics. In Griewank and Corliss [23],
17–24, 1992.

51. L. B. Rall and T. W. Reps: Algorithmic differencing. In U. Kulisch, R. Lohner, and
A. Facius, editors, Perspectives in Enclosure Methods, 133–147. Springer, Vienna, 2001.

52. D. Ratz: An optimized interval slope arithmetic and its application. Bericht 4/1996,
Institut für Angewandte Mathematik, Universität Karlsruhe, Karlsruhe, Germany, 1996.

53. T. W. Reps and L. B. Rall: Computational divided differencing and divided-difference
arithmetics. Higher-Order and Symb. Comp., 16:93–149, 2003.

54. K. Shamseddine and M. Berz: Exception handling in derivative computation with nonar-
chimedean calculus. In Berz et al. [3], 37–51, 1996.

55. B. Speelpenning: Compiling Fast Partial Derivatives of Functions Given by Algorithms.
Ph.D. thesis, Dept. of Comp. Sci., Univ. of Illinois, Urbana, IL, January 1980.

56. M. Weiser: Program slicing. Trans. on Softw. Eng., SE-10(4):352–357, July 1984.
57. R. E. Wengert: A simple automatic derivative evaluation program. Commun. ACM,

7(8):463–464, 1964.
58. R. Zippel: Personal communication to Thomas Reps. July 1996.
59. S. Zuhe and M. A. Wolfe: On interval enclosures using slope arithmetic. Applied Math-

ematics and Computation, 39(1):89–105, 1990.

Least Reflexive Points of Relations

Jules Desharnais1∗ and Bernhard Möller2

1Département d’Informatique, Université Laval, Québec, QC, G1K 7P4 Canada
Jules.Desharnais@ift.ulaval.ca

2Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
Bernhard.Moeller@informatik.uni-augsburg.de

Summary. Assume a partially ordered set (S,≤) and a relation R on S. We consider various sets
of conditions in order to determine whether they ensure the existence of a least reflexive point, that
is, a least x such that xRx. This is a generalization of the problem of determining the least fixed
point of a function and the conditions under which it exists. To motivate the investigation we first
present a theorem by Cai and Paige giving conditions under which iterating R from the bottom
element necessarily leads to a minimal reflexive point; the proof is by a concise relation-algebraic
calculation. Then, we assume a complete lattice and exhibit sufficient conditions, depending on
whether R is partial or not, for the existence of a least reflexive point. Further results concern the
structure of the set of all reflexive points; among other results we give a sufficient condition for
these to form a complete lattice, thus generalizing Tarski’s classical result to the nondeterministic
case.

Keywords: partial order, fixed point, least reflexive point, greatest reflexive point, lattice, relation,
inflationary relation.

1 Introduction

Iterative and recursive processes are at the center of computer science. The mathematical
background is the theory of (least) fixed points and is well understood in the case where the
iteration can be described by a (total) function [4, 10].

Much less is known about fixed points of relations. The problem Find the least x related
to itself was stated to the first author in these terms by Robert Paige in 1992, at the 44th
meeting of the IFIP Working Group 2.1 (Algorithmic Languages and Calculi), which was
held in Augsburg, Germany, and was organized by the second author. This problem has its
origin in the work presented in [3]. There, the authors are concerned with the construction
of efficient algorithms expressed in a language using set-theoretic queries augmented with
nondeterministic minimal and maximal fixed point queries (the deterministic case is treated
in an earlier paper [2]).

Let us state the problem more precisely. Consider a partially ordered set (S,≤) and a
binary relation R on S. A reflexive point of R is an element x ∈ S such that xRx. In the sequel
we give conditions under which R has a least reflexive point and investigate the structure of
the set of all reflexive points of R. It turns out that under a suitable relational generalization
of the property of monotonicity, the set of reflexive points even forms a complete lattice, so
that Tarski’s classical results generalize nicely to the nondeterministic case.

As a starting point, we present in Section 2 a theorem by Cai and Paige [3] giving
conditions under which iterating R from the bottom element of the partial order necessarily
leads to a minimal reflexive point; this theorem is based on the notion of an inflationary
relation.
∗ This research was supported by a grant from NSERC (Natural Sciences and Engineering Research

Council of Canada).

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 215–228.
c© 2008 Springer.

216 Jules Desharnais and Bernhard Möller

In Section 3, we first define four conditions generalizing monotonicity. Then, we examine
which combinations of these, if any, are sufficient to ensure the existence of a least reflexive
point; total and partial relations are tackled separately. In Section 4, we uncover some
additional structure on the set of reflexive points. In Section 5, we use duality principles to
present analogous results about greatest reflexive points. In Section 6, we study another set
of four possible generalizations of monotonicity and we explain their relationship with the
four conditions of Section 3.

We conclude with an evaluation of the results achieved and directions for future research.
There are also two appendices. Appendix A gives graphical representations of the lattices
and relations used as examples in the paper. They are grouped together to facilitate com-
parisons. The diagrams are labelled alphabetically. In the text, we refer to these diagrams
by “Appendix A(a)”, “Appendix A(b)”, etc. Appendix B contains examples for all possible
combinations of the conditions from Section 3 and all possible combinations of those of
Section 6. Most proofs are omitted. They can be found in [5, 6].

2 Reflexive Points of Inflationary Relations
As stated in the introduction, Cai and Paige [3] are concerned with the construction of
efficient algorithms expressed in a language using set-theoretic queries augmented with non-
deterministic minimal and maximal fixed point queries. A typical algorithm is one that finds
a maximal independent set of vertices of an undirected graph. A maximal independent set
of an undirected graph (V,E) is a subset U ⊆ V such that for any (u, v) ∈ E, at most one
of u and v is in U and, for any u ∈ V − U , there is a vertex v ∈ U such that (u, v) ∈ E.

Consider the following graph. It has two maximal independent sets of vertices, namely
{1, 3} and {2, 4}.

��������1 ��������2

��������4 ��������3

An algorithm incrementally building a maximal independent set would initially choose any
vertex and add new vertices, provided that this preserves independence, until a fixed point
is reached where no more vertices can be added. Here is such an algorithm:1

U := ∅ ;
while ∃(v : v ∈ V − U : U ∪ {v} is independent) do

U := U ∪ �{v | U ∪ {v} is independent}
The expression � S denotes an arbitrary element from the nonempty set S. The following
relation R on the powerset P{1, 2, 3, 4} is the relation computed by the body of the nonde-
terministic loop, i.e., the set of pairs (U1, U2) such that U2 is a possible value of variable U
after one execution of the body of the loop if U1 is the value of U before the execution.

R :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∅, {1}) ({1, 2}, {1, 2}) ({1, 2, 3}, {1, 2, 3})
(∅, {2}) ({1, 3}, {1, 3}) ({1, 2, 4}, {1, 2, 4})
(∅, {3}) ({1, 4}, {1, 4}) ({1, 3, 4}, {1, 3, 4})
(∅, {4}) ({2, 3}, {2, 3}) ({2, 3, 4}, {2, 3, 4})
({1}, {1, 3}) ({2, 4}, {2, 4}) ({1, 2, 3, 4}, {1, 2, 3, 4})
({2}, {2, 4}) ({3, 4}, {3, 4})
({3}, {1, 3})
({4}, {2, 4})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

1 Quantifiers have three arguments: a list of variables, the domain over which the quantification
applies, and the quantified expression; for instance, ∀(x : P : Q) is read “for all x satisfying P ,
Q holds”, or “for all x, P ⇒ Q”, while ∃(x : P : Q) is read “there exists an x satisfying P and Q”.
When the second argument is true, it is omitted.

Least Reflexive Points of Relations 217

This relation has no least reflexive point, but it has many minimal ones, namely all the
subsets of {1, 2, 3, 4} with exactly two elements.

One interesting property of relation R in (1) is that any path starting at ∅ necessarily
leads to a minimal reflexive point. Hence, one can build a minimal reflexive point iteratively
starting from ∅ — this is what the above algorithm does.

We now give sufficient conditions that ensure this property.
By V and I we denote the universal and identity relations, respectively. The complement

of a set or relation R is denoted by R. The composition (or relative product) of two relations Q
and R is defined by Q;R := {(s, u) | ∃(t :: sQt and tRu)}. As usual, R∗ denotes the reflexive
and transitive closure of R. The converse of a relation R is defined by R̆ := {(s, t) | tRs}.
Definition 1 Let (S,≤,⊥) be a partial order with least element ⊥. We say that a relation
R on S is inflationary [3] iff R is total and included in ≤, i.e., R;V = V and R ⊆ ≤. In
elementwise terms this means ∀(x :: ∃(y :: xRy)) and ∀(x :: ∀(y : xRy : x ≤ y)).

A relation R is progressively finite iff there is no infinite chain s0, s1, s2, . . ., such that
(si, si+1) ∈ R, for all i ≥ 0 [9].

Because the notion of well-foundedness is often used to characterize relations that do not
have infinite chains, we remark that R is progressively finite iff its converse is well-founded.

Proposition 3 Let Q and R be relations and f(X) := R;X ∪Q.
1. If R is progressively finite, then f has a unique fixed point, viz. R∗;Q [1].
2. If Q ⊆ R and R is progressively finite, then Q is progressively finite.

Is is shown in [3] that, for an inflationary relation R on a progressively finite order, iteration
from an arbitrary element necessarily leads to a reflexive point. To state this in relation-
algebraic terms we first observe that R ∩ I is a partial identity relation characterizing the
set of reflexive points of R. Hence we have x R∗; (R∩ I) y iff from x we can reach a reflexive
point y by iterating R. The claim follows if we can show that this relation is total, which is
expressed by R∗; (R ∩ I);V = V .

Theorem 1 Let (S,≤) be a partial order such that < is progressively finite. Let R be a
relation on S. If R is inflationary, then R∗; (R ∩ I);V = V .

If (S,≤) has a least element ⊥ then ⊥ is a natural starting point for the iteration of R.
The relation R in (1) is inflationary, using the ordering ⊆ on P{1, 2, 3, 4}, and ⊂ is

progressively finite. This is why from any subset of {1, 2, 3, 4} there is a path by R to a
reflexive subset of {1, 2, 3, 4}.

We now present a different example, where relation R still satisfies the preconditions of
Theorem 1, and also has a least reflexive point. The lattice is P{1, 2, 3} with the inclusion
ordering. The relation R is the Hasse diagram of ⊂ plus the pair ({1, 2, 3}, {1, 2, 3}), that is,

R :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∅, {1}) ({1}, {1, 2}) ({1, 2}, {1, 2, 3})
(∅, {2}) ({1}, {1, 3}) ({1, 3}, {1, 2, 3})
(∅, {3}) ({2}, {1, 2}) ({2, 3}, {1, 2, 3})

({2}, {2, 3}) ({1, 2, 3}, {1, 2, 3})
({3}, {1, 3})
({3}, {2, 3})

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2)

This relation could correspond to an (extremely simple) algorithm that, given a set T ,
adds to T an element not in T , if there is any. Note that R is inflationary and that ⊂ is
progressively finite. Thus Theorem 1 applies and explains why from any subset of {1, 2, 3}
there is a path to the unique reflexive point {1, 2, 3}.

218 Jules Desharnais and Bernhard Möller

3 Four Conditions Generalizing Monotonicity

In this section, we generalize the classical fixed-point theory of monotonic functions on
complete lattices to the relational case. Therefore, we assume the partial order to be a
complete lattice (S,�,�,⊥, ,≤). Letting R be a binary relation on S, we give in Theorem 2
a sufficient condition implying the existence of a least reflexive point for R when R is a total
relation. A consequence of this lemma is Theorem 3 in Section 4, which shows that under
the same condition the set of reflexive points of total relations is a complete lattice. We deal
with partial relations in Section 3.4.

We denote, for relation R and element x, by xR := {y | xRy} the set of images of x,
and, for any T ⊆ S, by �T and �T the meet and join, respectively, of the elements in T .
With these conventions we define the following notations:

(a) m� := �{x | �xR ≤ x},
(b) m� := �{x | �xR ≤ x}. (3)

The elements m� and m� generalize the notion of least prefixed point of a function; indeed,
for a total function R, we have �xR =�xR = the unique image of x, so that m� = m� =
the least prefixed point of R.

3.1 Monotonicity of Relations

In the theory of fixed points of functions, monotonic functions play a major role and we
seek generalizations of this notion to the case of relations. The following are four natural
conditions that can be imposed on R:

(a) ∀(x, y : x < y :�xR ≤ � yR),
(b) ∀(x, y : x < y :�xR ≤ � yR),
(c) ∀(x, y : x < y :�xR ≤ � yR),
(d) ∀(x, y : x < y :�xR ≤ � yR).

(4)

These are natural conditions because they all constrain in some way how the “packet” of
images of x increases with increasing x, by saying how the lower and upper bounds of these
images increase. When R is a total function, all are equivalent and they all state that R is
monotonic (due to �xR =�xR = the unique image of x).

A total function is an extreme case of a relation. There are two more relaxed cases:
that of total relations and that of partial functions (functions for short, in the sequel).
If relation R is total, then �xR ≤ �xR, for all x. If R is functional (i.e., is a partial
function), then �xR ≤ �xR. This is why we obtain the following implications between
Conditions 4(a,b,c,d).

4(c) ⇒ 4(a)
R total: ⇓ ⇓

4(d) ⇒ 4(b)

4(c) ⇐ 4(a)
R function: ⇑ ⇑

4(d) ⇐ 4(b)
(5)

From these diagrams, one can deduce that if R is a total function, all four Conditions 4(a,b,c,d)
are equivalent, as mentioned above.

Although Conditions 4(a,b,c,d) are not independent for the special kinds of relations
mentioned above, in the general case they are, as the following examples show.
1. Condition 4(a) does not follow from (the conjunction of) 4(b,c,d). Take S to be the

lattice {⊥, a, b, } with ordering ⊥ < a < and ⊥ < b < (see Appendix A(a)), and

R := {(a, a), (a, b), (b, a), (b, b), (,)}. (6)

2. Condition 4(b) does not follow from 4(a,c,d). This can be seen by taking the lattice
{⊥, } with ordering ⊥ < (see Appendix A(b)), and the empty relation

R := ∅. (7)

Least Reflexive Points of Relations 219

3. Condition 4(c) does not follow from 4(a,b,d). Take S to be the lattice {⊥, a, b, } with
ordering ⊥ < a < and ⊥ < b < (see Appendix A(c)), and

R := {(⊥, a), (⊥, b), (a,⊥), (a,), (b,⊥), (b,), (, a), (, b)}. (8)

4. Condition 4(d) does not follow from 4(a,b,c). Take S to be the lattice {⊥, } with
ordering ⊥ < (see Appendix A(d)), and

R := {(⊥,⊥), (⊥,)}. (9)

In fact, the independence is even more “complete”: there are examples for all 16 possible
combinations of 4(a,b,c,d) (see Appendix B).

As is easily seen, 4(a) is equivalent to x ≤ y ⇒�xR ≤ � yR, for all x and y; this means
that the function (x ::�xR) is monotonic. Similarly, from 4(d), we get that (x ::�xR) is
monotonic. Because we assume a complete lattice, m� and m� are the least fixed points of
(x ::�xR) and (x ::�xR), respectively:

(a) Condition 4(a) implies �m�R = m�,
(b) Condition 4(d) implies �m�R = m�.

(10)

3.2 A Stronger Set of Conditions

One may wonder why in 4(a,b,c,d) we did not use x ≤ y instead of x < y, which would give

(a) ∀(x, y : x ≤ y :�xR ≤ � yR), (c) ∀(x, y : x ≤ y :�xR ≤ � yR),
(b) ∀(x, y : x ≤ y :�xR ≤ � yR), (d) ∀(x, y : x ≤ y :�xR ≤ � yR). (11)

This is because of the following relationship between these properties:

11(a) ⇔ 4(a), 11(c) ⇔ 4(c) and R functional,
11(b) ⇔ 4(b) and R total (if �= ⊥), 11(d) ⇔ 4(d). (12)

The first and last equivalences are easy to see. The proof of the second one is based on the
observation that if the set of images of x is empty, then �xR ≤ �xR ⇔ ≤ ⊥, and the
third equivalence is due to the fact that �xR ≤ �xR holds only if the set of images of x
contains at most one element.

Since Conditions 11(b,c) are too strong, it is better to use 4(a,b,c,d) and add totality or
functionality only as needed.

3.3 Reflexive Points of Total Relations

In this and the following subsection, we deal separately with total relations and partial
relations, because this gives a clearer picture of the problem. We begin with the simpler
case and assume in this section that relation R is total. Before showing the main result
(Theorem 2), we need a lemma.
Lemma 1 Let R be a total relation satisfying Condition 4(c). Then m�R = {m�}. In
particular, m� is a reflexive point of R.

One may wonder whether m� is also a reflexive point under the same conditions (totality
+ 4(c)). The following relation, on the lattice {⊥, a, b, c, } with ordering ⊥ < a < c <
and ⊥ < b < c < , shows that this is not the case (Appendix A(e)). For this relation,
m� = ⊥.

R := {(⊥, a), (⊥, b), (a, c), (b, c), (c, c), (,)} (13)
And here is the main result of this section.

Theorem 2 Let R be a total relation and assume Condition 4(c). Then R has a least re-
flexive point, viz., l :=�C, where C := {x | xRx}.

The relation given in (13) is an example of a total relation that satisfies the precon-
dition of Theorem 2 (i.e., Condition 4(c)). For another, less trivial, example of a relation
satisfying 4(c), see (18). Condition 4(c) is very strong, since it implies 4(a,b,c,d) (see (5)).

220 Jules Desharnais and Bernhard Möller

One can check that the relation (1) of Section 2 satisfies none of the Conditions 4(a,b,c,d)
(for instance, note that {1} ⊆ {1, 2} while

⋂{1}R =
⋃{1}R = {1, 3} and

⋂{1, 2}R =⋃{1, 2}R = {1, 2}). Hence, it is not too surprising that there is no least reflexive point.
We conclude this subsection on the case of total relations with the remark that Condi-

tion 4(c) in Theorem 2 cannot be relaxed to a weaker combination of 4(a,b,d). In (8) we see
an example of a total relation that satisfies all of 4(a,b,d) and that has no reflexive point.
On the other hand, relation R in (2) satisfies Conditions 4(a,b,d) but does not satisfy 4(c),
while it has a unique reflexive point and thus a least one. So Conditions 4(a,b,c,d) do not
cover all possible situations. This illustrates the need for other conditions, such as those
presented in Section 2.

3.4 Reflexive Points of Partial Relations

We suppose here that R is not total, i.e., there is an s ∈ S such that sR = ∅. As we will
see, this introduces a strong constraint, because � sR = �∅ = and � sR = �∅ = ⊥.
We exclude the trivial case where the lattice S contains only one element, since in this case
the only partial relation is ∅, and it has no reflexive point. So, assume ⊥ �= .

We could show that the conjunction of Conditions 4(a,b,c,d) is sufficient to ensure the
existence of a least reflexive point. However, this is a bit too strong. We start by exhibiting
combinations of Conditions 4(a,b,c,d) that do not ensure the existence of a least reflexive
point. This will help pinpointing the essential conditions.
– The relation R in (6) has three reflexive points, but no least one. This relation satis-

fies 4(b,c,d), but not 4(a). This shows that 4(a) is essential.
– The relation R in (7) has no reflexive point, hence no least one. This relation satis-

fies 4(a,c,d), but not 4(b). This shows that 4(b) is essential.
Thus, 4(a,b) are essential. However, they are not sufficient. The relation

R := {(⊥, a), (⊥, b), (a, a), (a, b), (b, a), (b, b)} (14)

on the lattice {⊥, a, b, }, with ordering ⊥ < a < and ⊥ < b < , satisfies 4(a,b) (it
satisfies none of 4(c,d)) and has no least reflexive point. See Appendix A(f).

We will show that each of the combinations 4(a,b,c) and 4(a,b,d) is sufficient. Before
dealing with the first one, we derive a consequence of Conditions 4(a,b).

Lemma 2 Let R be a relation satisfying 4(a,b) and let s be such that sR = ∅. Then
∀(y : s < y : yR = { }).

Note that Condition 4(b) implies that any two elements that are not in the domain of R
are not related by ≤.

Proposition 4 Let R be a partial relation satisfying 4(a,b,c). Then R has a least reflexive
point.

In (9), we have already given an example of a partial relation that satisfies 4(a,b,c) but
not 4(d). Another example is the lattice {⊥, a, b, c, d, e, f, g, }, with ordering

⊥ < a < , ⊥ < b < d < e < g < and ⊥ < c < d < f < g,
and relation

{(⊥, b), (⊥, c), (b, d), (c, d), (d, d), (e, e), (f, f), (g, g), (,)}. (15)

See Appendix A(g). Note that the least reflexive point is d, which means that the con-
straints 4(a,b,c) may lead to a somewhat more interesting situation than the next case that
we analyze, where the least reflexive point is always one of ⊥ or .

Now we tackle combination 4(a,b,d) and state a lemma similar to Lemma 2:

Lemma 3 Let R be a relation satisfying 4(b,d) and let s be such that sR = ∅. Then
∀(x : x < s : xR = {⊥}).

Now we obtain

Least Reflexive Points of Relations 221

Proposition 5 Let R be a partial relation satisfying 4(a,b,d). Then R has a least reflexive
point, which is either ⊥ or .
Proof : Let s be such that sR = ∅. On the basis of Lemma 2 and Lemma 3, we distinguish
three cases according to the value of s.
1. s = ⊥: then ⊥R = ∅ and tR = { } for every t �= ⊥. There is a unique reflexive point,

namely , which is thus the least and greatest reflexive point.
2. s = : then R = ∅ and tR = {⊥} for every t �= . There is a unique reflexive point,

namely ⊥, which is thus the least and greatest reflexive point.
3. s �= ⊥ and s �= : then ⊥R = {⊥} and R = { }. There is thus a least reflexive point,
⊥, and a greatest reflexive one, . ��

In case 3 of the proof of the previous proposition, there might be other reflexive points. As
an example, take S to be the lattice {⊥, a, b, } with ordering ⊥ < a < and ⊥ < b < ,
and the partial function

R := {(⊥,⊥), (b, b), (,)}. (16)
Here, s = a. See Appendix A(h).

And now an example of a partial relation that satisfies 4(a,b,d) but does not satisfy 4(c):
the lattice is {⊥, a, b, c, d, e, }, with ordering ⊥ < a < , ⊥ < b < c < e < and b < d < e,
and the relation is

{(⊥,⊥), (b, c), (b, d), (c, b), (c, e), (d, b), (d, e), (e, c), (e, d), (,)}. (17)

See Appendix A(i). Note that the subrelation on elements {b, c, d, e} is the same (modulo
renaming) as the one in (8), which was used as a total relation illustrating that 4(a,b,d)
does not imply 4(c).

4 Insights on the Structure of the Set of Reflexive Points

4.1 The Roles of m� and m�

The next proposition shows that every reflexive point is above m�.

Proposition 6 ∀(x : xRx : m� ≤ x).

Based on the previous proposition, the next proposition shows that the reflexive points
between m� and m� are linearly ordered; this only requires Condition 4(c). The relation R
need not be total.

Proposition 7 Assume Condition 4(c). Then
∀(x : xRx and yRy : x ≤ y or y ≤ x or (m� ≤ x and m� ≤ y)).

There can be an infinite number of reflexive points between m� and m�. Let S be the
lattice N ∪ {∞}, with the usual ordering, where N is the set of natural numbers. Take

R := {(m,n) | m = n or (m ∈ N and n = m + 1)}. (18)

One can check that R satisfies 4(c), m� = 0,m� = ∞, and that every element of S is related
to itself, and thus 0 is the least reflexive point. See Appendix A(j).

One may also have m� = m�. This is the case, for instance, of the relation in (15), see
Appendix A(g). Note that for this relation, all the reflexive points are above m� (= m� = ⊥)
and that they are not linearly ordered.

It is even possible to have m� < m�. Consider for instance the relation {(,)} on the
lattice {⊥, }, for which m� = and m� = ⊥.

However, for total R we have {x | �xR ≤ x} ⊆ {x | �xR ≤ x} and hence m� ≤ m�.

222 Jules Desharnais and Bernhard Möller

4.2 Lattice Structure of the Reflexive Points

We now come to the main result of this section, viz. the generalization of Tarski’s result [10]
on the fixed points of a monotonic total function to the relational case.

Theorem 3 Let R be a total relation and assume Condition 4(c). Then the set of reflexive
points of R is a complete lattice.

Moreover, we have
Proposition 8 For a total relation R satisfying Condition 4(c) define l := �{x | xRx}.
Then m� ≤ l ≤ m�.

Finally, combining our results for the partial case with Theorem 3, we obtain

Proposition 9 Let R be a partial relation that satisfies 4(a,b,c) and R �= ∅. Then the set
of reflexive points is a complete lattice.

The condition R �= ∅ is mandatory: the dual of Appendix A(a) satisfies 4(a,b,c) but
has no greatest reflexive point, so that the set of reflexive points is not a complete lattice.

Unfortunately, the combination 4(a,b,d) does not guarantee a complete lattice of reflexive
points, not even when R �= ∅. This is shown in the example of Appendix A(n): the lattice
is {⊥, a, b, c, d, e, f, g, h, i, }, with ordering ⊥ < a < , ⊥ < b < c < e < f < g < i < and
b < d < e < f < h < i, and the relation is

{(⊥,⊥), (b, c), (b, d), (c, c), (c, d), (d, c), (d, d), (e, c), (e, d),
(f, g), (f, h), (g, g), (g, h), (h, g), (h, h), (i, g), (i, h), (,)}. (19)

The set {⊥, c, d, g, h, } of reflexive points is not a lattice, since, e.g., the subset {c, d} has two
minimal upper bounds, namely g and h. Note how the total relation of Appendix A(l), which
also satisfies 4(a,b,d), is used twice as a sublattice of the partial relation of Appendix A(n).

5 Greatest Reflexive Points
We can obtain results for greatest reflexive points using properties of the least reflexive
points in the dual of the given lattice. It suffices to replace ≤,�,� and “least” by ≥,�,�
and “greatest”, respectively. Doing so reveals that Conditions 4(a), 4(b), 4(c) and 4(d) are
dual to 4(d), 4(b), 4(c) and 4(a), respectively. Properties of total or partial relations then
easily follow from the previous text.

By Proposition 4, the set of Properties 4(a,b,c) guarantees the existence of a least reflexive
point. Its dual, 4(b,c,d), guarantees the existence of a greatest reflexive point. The question
arises whether it is possible to have a relation satisfying 4(b,c,d), and thus having a greatest
reflexive point, that does not have a least reflexive point. The answer is yes and is illustrated
by the relation given in (6) and Appendix A(a).

6 Can Monotonicity be Characterized Another Way?
Since we are working in a relational setting, an obvious question is whether monotonicity
can be characterized in a purely algebraic, point-free style.

6.1 Candidate Conditions and Their Interrelation

For the case of total functions it is well known how to do this; when R is a total function, the
following four conditions 20(a’,b’,c’,d’) all are equivalent to the usual pointwise definition
of monotonicity. But for the same reasons as in discussed in Section 3.2, we will work with
Conditions 20(a,b,c,d) (see also Section 6.2):

(a) <;R ⊆ R;≤, (a’) ≤;R ⊆ R;≤,
(b) < ⊆ R;≤;R̆ , (b’) ≤ ⊆ R;≤;R̆ ,
(c) R̆ ;<;R ⊆ ≤, (c’) R̆ ;≤;R ⊆ ≤,
(d) R̆ ;< ⊆ ≤;R̆ , (d’) R̆ ;≤ ⊆ ≤;R̆ .

(20)

Least Reflexive Points of Relations 223

However, in the case of general relations they are not equivalent. There, we have that
Conditions 20(a’,b’,c’,d’) are equivalent to the following pointwise expressions.

20(a’) ∀(x, y : x ≤ y : ∀(v : yRv : ∃(u : xRu : u ≤ v)))
20(b’) ∀(x, y : x ≤ y : ∃(u, v : xRu and yRv : u ≤ v))
20(c’) ∀(x, y : x ≤ y : ∀(u, v : xRu and yRv : u ≤ v))
20(d’) ∀(x, y : x ≤ y : ∀(u : xRu : ∃(v : yRv : u ≤ v)))

On the basis of the structure of these expressions, one could say that Conditions 20(a’,b’,c’,d’)
respectively define upward existential monotonicity, existentialmonotonicity, universal mono-
tonicity and downward existential monotonicity.

A first consequence of these properties is stated in
Proposition 10 20(a,d) ⇒ R = ∅ or R total.
6.2 Interdependence of the Conditions
As in the case of our earlier Conditions 4, we state the connections between the unprimed
and primed versions

20(a’) ⇔ 20(a), 20(c’) ⇔ 20(c) and R functional,
20(b’) ⇔ 20(b) and R total, 20(d’) ⇔ 20(d). (21)

Hence, the situation is almost identical to that with Conditions 4 (see (12)), except for the
equivalence of 20(b’) and 20(b). Rather than using all eight Conditions 20, we will simply use
Conditions 20(a,b,c,d) together with totality or functionality, like we did for Conditions 4.
One can show (see [5,6]) that the same implications hold between Conditions 20(a,b,c,d) as
between 4(a,b,c,d) (see Equation (5)):

20(c) ⇒ 20(a)
R total: ⇓ ⇓

20(d) ⇒ 20(b)

20(c) ⇐ 20(a)
R function: ⇑ ⇑

20(d) ⇐ 20(b)
(22)

Here too, one can deduce from these diagrams that if R is a total function, all four Condi-
tions 20(a,b,c,d) are equivalent, as was mentioned in the introductory part of Section 6.1.

In view of these striking similarities, one might expect that corresponding properties
in 4(a,b,c,d) and 20(a,b,c,d) are equivalent. However, this is not the case, as the following
theorem shows.
Theorem 4 The following relationships hold between Conditions 4 and 20. All implications
are strict (i.e., equivalence does not hold):

20(a) ⇒ 4(a) 20(b) ⇒ 4(b)
20(c) ⇔ 4(c) 20(d) ⇒ 4(d)

A single example (see Appendix A(k)) can be used to show that the three implications
are strict: Take S to be the lattice {⊥, a, b, c, d, } with ordering ⊥ < a < c < and
⊥ < b < d < , and

R := {(⊥, c), (⊥, d), (a, c), (a, d), (b, c), (b, d), (c, a), (c, b), (d, a), (c, b), (, a), (, b)}. (23)
This total relation satisfies all of 4(a,b,d) and none of 20(a,b,d). The partial relation given
in (17) is another example showing the strictness of the implications.

Hence, the question whether these conditions are independent cannot be reduced to our
independence results in Section 3. A separate investigation shows the following:
1. Condition 20(b) does not follow from 20(a,c,d). This is shown by the relation given in (7)

(Appendix A(b)).
2. Condition 20(c) does not follow from 20(a,b,d). This is shown by the lattice {⊥, a, }

with ordering ⊥ < a < and the relation (see Appendix A(m))
R := {(⊥, a), (⊥,), (a, a), (a,), (,)}. (24)

3. Conditions 20(a,d) both follow from 20(b,c).
4. Conditions 20(a,d) imply 20(b) or 20(c).

Thus the independence properties of Conditions 20 are different from those of Condi-
tions 4 and one cannot have combinations like 20(a,b,c) and 20(b,c,d) without having all
of 20(a,b,c,d). However, all the remaining combinations of our properties can be exemplified
with lattices and relations, see Appendix B.

224 Jules Desharnais and Bernhard Möller

6.3 On the Existence of Least Reflexive Elements

Do the algebraic Conditions 20 ensure the existence of least reflexive elements of partial
relations in the same manner as Conditions 4? Unfortunately, this is not the case, as can be
seen as follows. The example in (7) (Appendix A(b)) satisfies 20(a,c,d), but has no reflexive
point, so that 20(b) is essential for the existence.

On the other hand, it can be shown that 20(b) implies totality of R. In sum, all this
means that Conditions 20 are not useful for studying the reflexive points of partial relations.

For total relations, we have concluded the corresponding Section 3.3 with the remark
that Condition 4(c) in Theorem 2 cannot be relaxed to a weaker combination of some
of 4(a,b,d). Because Conditions 20(a,b,d) are stronger than 4(a,b,d) (see Theorem 4), one
might conjecture that 4(c) (equivalently, 20(c)) could be weakened to a combination of some
of 20(a,b,d). However, this is not the case. The lattice {⊥, a, b, }, with ordering ⊥ < a <
and ⊥ < b < , and the relation

R := {(⊥, a), (⊥, b), (a, a), (a, b), (b, a), (b, b), (, a), (, b)} (25)
(see Appendix A(l)) provide an example of a total relation that satisfies all Conditions
20(a,b,d) and that has no least reflexive point.

6.4 Other Conditions Ensuring Reflexive Elements

In this paper we have solely treated the case of complete lattices. However, it is well known
that under suitable assumptions Tarski’s original fixed point theorem carries over to weaker
structures such as chain-complete partial orders (cpo’s).

In this connection we want to mention the paper [7] by Fujimoto. It studies total rela-
tions, represented as set-valued functions, on a cpo with a least element. The monotonicity
condition used is 20(d’). Fujimoto shows that under the additional assumption that all image
sets under R are inductively ordered, i.e., contain for each subchain an upper bound, there
is an R-reflexive element, although not necessarily a least one.

It will be interesting to investigate further sufficient conditions with weaker assumptions.

7 Conclusion
This paper provides a first survey on the structure of the set of reflexive points of relations
on complete lattices. We have exhibited suitable adaptations of the notion of monotonicity
of a total function to the relational case. It may come as a certain surprise that, unless other
conditions are added (as in Section 6.4), the direct relational formulations of monotonicity of
a total function are of no use in this setting and have to be replaced by new conditions. With
the help of these we have shown an analogue of Tarski’s classical result [10] on existence
and lattice structure of the reflexive points. Another advantage of the new conditions is that
they are checked manually much more easily than the relational ones. What is still missing
is a suitable generalization of the notion of continuity and, following that, an investigation
when least reflexive elements can be obtained by iteration as in Kleene’s Theorem [8] (the
process being also already mentioned in [10]).

Another open question in connection with iteration (see Section 2) is whether there
are (not too strong) conditions guaranteeing the existence of a least reflexive point when
the strict ordering is progressively finite and the relation is inflationary. Moreover, which
additional conditions ensure that any path by R from ⊥ leads to this least reflexive point?
We conclude this paper with a last counterexample showing that Conditions 4(a,b,d) are not
sufficient to guarantee this. Consider again the relation R from (24) (see Appendix A(m)).
That relation is inflationary and satisfies 4(a,b,d), the strict ordering is progressively finite,
there is a least and a greatest reflexive point, but there is a path from ⊥ to that does not
go through the least reflexive point, which is a.

Acknowledgments
We are grateful to the referees of paper [6] for their helpful remarks, in particular to Oege
de Moor for his hint to look at Condition 20(a). Valuable comments were also provided by
Thorsten Ehm and Georg Struth.

Least Reflexive Points of Relations 225

A Examples and Counterexamples
This section contains diagrams of some of the lattices and relations presented in the paper.
Please see overleaf for further explanation.

226 Jules Desharnais and Bernhard Möller

Each lattice (S,�,�,⊥, ,≤) is described by the Hasse diagram of its corresponding
partial order, with boxes representing vertices (elements of S) and straight lines representing
edges. The relation R on the lattice is represented by arrows linking the boxes. Each box
contains three pieces of information: (i) on the left is the element s ∈ S, (ii) on the bottom
right is � sR, and (iii) on the top right is � sR. The following information is given under
each diagram: (i) the list of properties among 4(a,b,c,d) that hold for this diagram, (ii) the
list of properties among 20(a,b,c,d) that hold for this diagram, (iii) the word “Inflationary”,
if the relation is inflationary, and (iv) the equation where the relation is defined.

Least Reflexive Points of Relations 227

B Combinations of Properties

Here are examples of lattices and relations showing all possible combinations of Conditions 4
and all possible combinations of Conditions 20. For all but one example, there is no need of
sophisticated lattices: two linear orders suffice! Each example uses a minimal lattice, except
possibly relation (p) in the tables below; also, the trivial lattice with = ⊥ with the empty
or the universal relation could be used instead of (j) to illustrate 4(a,b,c,d) and 20(a,b,c,d).

The labels of the following relations correspond to those of the diagrams that follow the
presentation of the relations.
1. Lattice {⊥, } with ordering ⊥ < .

Relation Properties
(a) {(⊥,), (,⊥)} None
(b) {(⊥,⊥), (⊥,), (,⊥)} 4(a,b), 20(a,b)
(c) {(⊥,)} 4(a,c), 20(a,c)
(d) {(⊥,), (,⊥), (,)} 4(b,d), 20(b,d)
(e) {(,⊥)} 4(c,d), 20(c,d)
(f) {(⊥,⊥), (⊥,)} 4(a,b,c), 20(a,c)
(g) {(⊥,⊥), (⊥,), (,⊥), (,)} 4(a,b,d), 20(a,b,d)
(h) ∅ 4(a,c,d), 20(a,c,d)
(i) {(,⊥), (,)} 4(b,c,d), 20(c,d)
(j) {(⊥,⊥), (,)} 4(a,b,c,d), 20(a,b,c,d)

2. Lattice {⊥, a, } with ordering ⊥ < a < .
Relation Properties

(k) {(⊥,⊥), (⊥,), (a, a)} 4(a), 20(a)
(l) {(⊥, a), (⊥,), (a,⊥), (a, a), (, a)} 4(b), 20(b)
(m) {(a,⊥), (a, a)} 4(c), 20(c)
(n) {(a, a), (,⊥), (,)} 4(d), 20(d)
(o) {(⊥,⊥), (⊥, a), (, a), (,)} 4(b,c), 20(c)

3. Lattice {⊥, a, b, c, d, } with ordering ⊥ < a < c < and ⊥ < b < d < .
Relation Properties

(p) {(⊥,⊥), (a, a), (a, b), (c, c), (c, d), (,)} 4(a,d)

⊥�⊥

��
�⊥�

��

a) None

⊥�⊥

��
�⊥⊥

��

��

b) 4(a,b)
20(a,b)

⊥��

�⊥�

��

c) 4(a,c)
20(a,c)

��⊥

��

��

�⊥�

��

d) 4(b,d)
20(b,d)

⊥�⊥

��
⊥⊥�

e) 4(c,d)
20(c,d)

228 Jules Desharnais and Bernhard Möller

References
1. R. Backhouse et al.: Fixed point calculus. Information Processing Letters 53(3), 131–136,

1995.
2. J. Cai and R. Paige: Program derivation by fixed point computation. Science of Com-

puter Programming 11(3), 197–261, 1989.
3. J. Cai and R. Paige: Languages polynomial in the input plus output. In: Second Inter-

national Conference on Algebraic Methodology and Software Technology (AMAST ’91),
London, Springer, 287–300, 1992.

4. B. A. Davey and H. A. Priestley: Introduction to Lattices and Order. Cambridge Math-
ematical Textbooks. Cambridge University Press, Cambridge, 1990.

5. J. Desharnais and B. Möller: Least reflexive points of relations. Research Report, Institut
für Informatik, Universität Augsburg, Germany, 2002.

6. J. Desharnais and B. Möller: Least reflexive points of relations. Higher-Order and
Symbolic Computation. Special Issue in memory of Robert Paige. 18(1/2), 51–77, 2005.

7. T. Fujimoto: An extension of Tarski’s fixed point theorem and its application to isotone
complementarity problems. Mathematical Programming 28, 116–118, 1984.

8. S. C. Kleene: Introduction to Metamathematics. Van Nostrand, New York, 1952.
9. G. Schmidt and T. Ströhlein: Relations and Graphs. EATCS Monographs in Computer

Science. Springer, Berlin, 1993.
10. A. Tarski: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal

of Mathematics 5, 285–309, 1955.

Efficient Type Matching

Somesh Jha1, Jens Palsberg2, Tian Zhao3, and Fritz Henglein4

1Computer Science Department, University of Wisconsin, Madison, WI 53706, USA
jha@cs.wisc.edu

2UCLA Computer Science Department, University of California, Los Angeles, CA 90095, USA
palsberg@ucla.edu

3Department of Electrical Engineering and Computer Science, University of Wisconsin,
Milwaukee, WI 53211, USA. tzhao@cs.uwm.edu

4Department of Computer Science (DIKU), University of Copenhagen, DK-2100 Copenhagen,
Denmark. henglein@diku.dk

Summary. Palsberg and Zhao [25] presented an O(n2) time algorithm for matching two recursive
types; that is, deciding type isomorphism with associative-commutative product type constructors.
In this paper, we present an O(n log n)-time algorithm for matching recursive types and an O(n)-
time algorithm for matching nonrecursive types. The linear-time algorithm for nonrecursive types
works without hashing or pointer arithmetic, by employing multiset discrimination techniques due
to Paige et al. [9,10,21–24]. The O(n log n) algorithm for recursive types works by reducing the type
matching problem to the problem of finding a size-stable partition of a graph, which has O(n log n)
algorithms due to Cardon/Crochemore and Paige/Tarjan. The key to these algorithms is the use of
a “modify-the-smaller-half” approach pioneered by Hopcroft and Ullman for DFA minimization.

Our results may help improve systems, such as Polyspin and Mockingbird, that are designed
to facilitate interoperability of software components. We also discuss possible applications of our
algorithm to Java. Issues related to subtyping of recursive types are also discussed.

Keywords: graph algorithms, size-stable partitions, recursive types.

1 Introduction

Interoperability is a fundamental problem in software engineering. Interoperability issues
arise in various contexts, such as software reuse, distributed programming, use of legacy
components, and integration of software components developed by different organizations.
Interoperability of software components has to address two fundamental problems: match-
ing and bridging. Matching deals with determining whether two components A and B are
compatible, and bridging allows one to use component B using the interface defined for
component A.

Matching : A common technique for facilitating matching is to associate signatures with
components. These signatures can then be used as keys to retrieve relevant components from
an existing library of components. Use of finite types as signatures was first proposed by
Rittri [27]. Zaremski and Wing [32, 33] used a similar approach for retrieving components
from an ML-like functional library. Moreover, they also emphasized flexibility and support
for user-defined types. Aponte and Cosmo [2] had also studied a notion of type isomorphism
for equating module signatures in functional languages.

Bridging : In a multilingual context, bridge code for “gluing” components written in differ-
ent languages (such as C, C++, and Java) has to be developed. CORBA [20], PolySpin [5], and
Mockingbird [3, 4] allow composing components implemented in different languages. Soft-
ware components are considered to be of two kinds: objects, which provide public interfaces,
and clients, which invoke the methods of the objects and thereby use the services provided
by the objects.

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 229–246.
c© 2008 Springer.

230 Somesh Jha et al.

The Problem: Assume that we use types as signatures for components. Thus, the type
matching problem reduces to the problem of determining whether two types are equivalent.
Much previous work on type matching focuses on nonrecursive types [2,8,14,19,26–29,32]. In
this paper, we consider equivalence of recursive types. Equality and subtyping of recursive
types have been studied in the 1990s by Amadio and Cardelli [1]; Kozen, Palsberg, and
Schwartzbach [18]; Brandt and Henglein [7]; Jim and Palsberg [17]; and others. These papers
concentrate on the case where two types are considered equal if their infinite unfoldings are
identical. In this case, type equivalence can be decided in O(nα(n)) time. If we allow a
product-type constructor to be associative and commutative, then two recursive types may
be considered equal without their infinite unfoldings being identical. Alternatively, think of a
product type as a multiset, by which associativity and commutativity are obtained for free.
Such flexibility has been advocated by Auerbach, Barton, and Raghavachari [3]. Palsberg
and Zhao [25] presented a definition of type equivalence that supports this idea. They also
presented an O(n2) time algorithm for deciding their notion of type equivalence.

A notion of subtyping defined by Amadio and Cardelli [1] can be decided in O(n2)
time [18]. We also briefly discuss subtyping of recursive types with associative-commutative
products in this paper.

Our results: We present O(n log n) and O(n) time algorithms for deciding type equiva-
lence with and without type recursion, respectively. The O(n log n) algorithm improves upon
the O(n2) algorithm of Palsberg and Zhao [25]. It works by reducing the type matching prob-
lem to the well-understood problem of finding a size-stable partition of a graph [12,23]. The
O(n) algorithm employs multiset discrimination due to Paige et al.

Our algorithms and their bounds extend to type matching for an arbitrary number
of types and apply to shared type definitions (type abbreviations); e.g., all components
(methods, functions) in a library and an application can be partitioned in O(n log n), re-
spectively O(n), such that each resulting partition contains pairwise matching components,
where n is the size of the library and application combined. Furthermore, with such parti-
tioning as a preprocessing step, all pairwise type matching queries for components in the
combined set can be answered in constant time.

The organization of the paper is as follows. A small example is described in Section 2.
This example will be used throughout the paper for illustrative purposes. In Section 3 we
recall the notions of terms and term automata [1, 11, 16, 18], and we state the definitions of
types and type equivalence from the paper by Palsberg and Zhao [25]. In Section 4 we present
our O(n) algorithm for finite (nonrecursive) types, and in Section 5 we present our O(n log n)
algorithm for recursive types. An implementation of our O(n log n) algorithm is discussed in
Section 6. Subtyping of recursive types is discussed in Section 7. For simplicity, the technical
development is for pairwise type matching. In the Conclusion, Section 8, we point out the
extensibility of the algorithms to partitioning, compare our work to recent related work and
discuss possibilities for applications in practical type matching.

2 Example

In this section we provide a small example which will be used throughout the paper. It is
straightforward to map a Java type to a recursive type of the form considered in this paper. A
collection of method signatures can be mapped to a product type, a single method signature
can be mapped to a function type, and in case a method has more than one argument, the
list of arguments can be mapped to a product type. Recursion, direct or indirect, is expressed
with the µ operator. This section provides an example of Java interfaces and provides an
illustration of our algorithm.

Suppose we are given the four Java interfaces shown in Figure 1. We would like to find
out whether interface I1 is “structurally equal” to or “matches” with interface J2. We want
a notion of equality for which interface names and method names do not matter, and for
which the order of the methods in an interface and the order of the arguments of a method
do not matter.

Efficient Type Matching 231

interface I1 {
float m1(I1 a);
int m2(I2 a);

}

interface I2 {
I1 m3(float a);
I2 m4(float a);

}

interface J1 {
J1 n1(float a);
J2 n2(float a);

}

interface J2 {
int n3(J1 a);

float n4(J2 a);
}

Fig. 1. Interfaces I1, I2, J1, J2.

Notice that interface I1 is recursively defined. The method m1 takes an argument of type
I1 and returns a floating point number. In the following, we use names of interfaces and
methods to stand for their type structures. The type of method m1 can be expressed as
I1 → float . The symbol → stands for the function type constructor. Similarly, the type of
m2 is I2 → int . We can then capture the structure of I1 with conventional µ-notation for
recursive types:

I1 = µα.(α → float)× (I2 → int)

The symbol α is the type variable bound to the type I1 by the symbol µ. The interface
type I1 is a product type with the symbol × as the type constructor. Since we think of the
methods of interface I1 as unordered, we could also write the structures of I1 and I2 as

I1 = µα.(I2 → int)× (α → float) I2 = µδ.(float → I1)× (float → δ)
In the same way, the structures of the interfaces J1 and J2 are:

J1 = µβ.(float → β)× (float → J2) J2 = µη.(J1 → int)× (η → float).

I1×

→

floatI1

→

I2 int

I2×

→

I1float

→

float I2

Fig. 2. Trees for interfaces I1 and I2.

J1×

→

J1float

→

float J2

J2×

→

intJ1

→

J2 float

Fig. 3. Trees for interfaces J1 and J2.

Trees corresponding to the two types are shown in Figures 2 and 3. The interface types
I1, J2 are equivalent iff there exists a one-to-one mapping or a bijection from the methods
in I1 to the methods in J2 such that each pair of methods in the bijection relation have the
same type. The types of two methods are equal iff the types of the arguments and the return
types are equal.

The equality of the interface types I1 and J2 can be determined by trying out all possible
orderings of the methods in each interface and comparing the two types in the form of finite
automata. In this case, there are only few possible orderings. However, if the number of
methods is large and/or some methods take many arguments, the above approach becomes
time consuming because the number of possible orderings grows exponentially. An efficient
algorithm for determining equality of recursive types will be given later in the paper.

232 Somesh Jha et al.

3 Definitions

A (uniform) recursive type is a type described by a set of equations involving the µ op-
erator. An example of a recursive type was provided in Section 2. This section provides
representation of recursive types as terms and term automata.

Term automata and representation of types are described in Subsection 3.1. A definition
of type equivalence for recursive types in terms of bisimulation is given in Subsection 3.2. An
efficient algorithm for determining whether two types are equivalent is given in Section 5.

3.1 Terms and Term Automata

Here we give a general definition of (possibly infinite) terms over an arbitrary finite ranked
alphabet Σ. Such terms are essentially labeled trees, which we model as partial functions
labeling strings over ω (the natural numbers) with elements of Σ.

Let Σn denote the set of elements of Σ of arity n. Let ω denote the set of natural numbers
and let ω∗ denote the set of finite-length strings over the alphabet ω.

A term over Σ is a partial function t : ω∗ → Σ satisfying the following properties:
(i) the domain of t is nonempty and prefix-closed, and
(ii) if t(α) ∈ Σn, then we have that { i | α i ∈ the domain of t } = {0, 1, . . . , n− 1}.

Let t be a term and α ∈ ω∗. Define the partial function t↓α : ω∗ → Σ by t↓α(β) = t(αβ).
If t↓α has nonempty domain, then it is a term, and is called the subterm of t at position α.

A term t is said to be regular if it has only finitely many distinct subterms; that is, if
{t↓α | α ∈ ω∗} is a finite set.

Every regular term over a finite ranked alphabet Σ has a finite representation in terms
of a special type of automaton called a term automaton. A term automaton over Σ is a
tuple A = (Q, Σ, q0, δ, �) where: (i) Q is a finite set of states, (ii) q0 ∈ Q is the start state,
(iii) δ : Q × ω → Q is a partial function called the transition function, and (iv) � : Q → Σ
is a (total) labeling function, such that for any state q ∈ Q, if �(q) ∈ Σn then we have that:
{i | δ(q, i) is defined} = {0, 1, . . . , n− 1}.

The partial function δ extends naturally to an inductively defined partial function
δ̂ : Q× ω∗ → Q such that: (i) δ̂(q, ε) = q, and (ii) δ̂(q, α i) = δ(δ̂(q, α), i).

For any q ∈ Q, the domain of the partial function λα.δ̂(q, α) is nonempty (it always
contains ε) and prefix-closed. Moreover, because of the condition on the existence of i-
successors in the definition of term automata, the partial function λα.�(δ̂(q, α)) is a term.

Let A be a term automaton. The term represented by A is the term tA = λα.�(δ̂(q0, α)).
A term t is said to be representable if t = tA for some A.

Intuitively, tA(α) is determined by starting in the start state q0 and scanning the input
α, following transitions of A as far as possible. If it is not possible to scan all of α because
some i-transition along the way does not exist, then tA(α) is undefined. If on the other hand
A scans the entire input α and ends up in state q, then tA(α) = �(q).

It is straightforward to show that a term t is regular if and only if it is representable.
Moreover, a term t is regular if and only if it can be described by a finite set of equations
involving the µ operator [18].

3.2 Equivalence of Recursive Types

A recursive type is a regular term over the ranked alphabet
Σ = Γ ∪ {→} ∪ {∏n | n ≥ 2},

where Γ is a set of base types, → is binary, and
∏n is of arity n. Given a type σ, if

σ(ε) =→, σ(0) = σ1, and σ(1) = σ2, then we write the type as σ1 → σ2. If σ(ε) =
∏n and

σ(i) = σi , ∀i ∈ {0, 1, . . . , n− 1}, then we write the type σ as
∏n−1

i=0 σi.

Efficient Type Matching 233

A syntactic presentation of a recursive type can be generated by the grammar:
t ::= Γ | t → t | ∏n−1

i=0 ti | µα.t | α

where α ranges over type variables. There are standard algorithms for translating syntactic
presentations of types into term automata, and vice versa, see [18] for a summary.

For example, a recursive type t generated by the above grammar can be reduced to a
term automaton (Q,Σ, q0, δ, �), where
– q0 corresponds to the term t;
– for each subterm σ of t that is either a base type, a function type, or a product type,

there is a distinct state q ∈ Q such that �(q) = σ(ε) and δ(q, i) = qi, where state qi

corresponds to σ(i);
– for each subterm µα.t′ of t, where state q′ corresponds to t′, if ∃σ in t′ such that σ(i) = α,

and state q corresponds to σ, then let δ(q, i) = q′.
Palsberg and Zhao [25] presented three equivalent definitions of type equivalence. Here we
will work with the one which is based on the idea of bisimilarity. A relation R on types is
called a bisimulation if it satisfies the following three conditions:
– if (σ, τ) ∈ R, then σ(ε) = τ(ε)
– if (σ1 → σ2, τ1 → τ2) ∈ R, then (σ1, τ1) ∈ R and (σ2, τ2) ∈ R

– if (
∏n−1

i=0 σi,
∏n−1

i=0 τi) ∈ R, then there exists a bijection b : {0 . . . n − 1} → {0 . . . n − 1}
such that ∀i ∈ {0 . . . n− 1}, (σi, τb(i)) ∈ R.

Bisimulations are closed under union, therefore, there exists a largest bisimulation R =⋃ { R | R is a bisimulation }. It is straightforward to show that R is an equivalence
relation. Two types τ1 and τ2 are said to be equivalent (denoted by τ1

∼= τ2) iff (τ1, τ2) ∈ R.

4 Linear-Time Type Equivalence for Nonrecursive Types
Assume that we are given two nonrecursive types that are represented as two term automata.
In this section we shall demonstrate that type matching of nonrecursive types can be decided
in O(n) worst-case time, based on a result of Paige and Yang.

Multiset discrimination is a simple, highly efficient technique for finding and eliminat-
ing duplicate values in a structured collection of values, even in the presence of associative
(A), associative-commutative (AC), and associative-commutative-idempotent (ACI) opera-
tors; that is, list, multiset and set comprehensions. It was pioneered by Paige, Tarjan, and
Bonic [21,23] for improved DFA minimization and lexicographic sorting; it has been applied
to an array of language processing problems demonstrating that hashing and pointer (array
index) arithmetic can be avoided, with improved worst-case complexity [9, 10]; it has been
extended to provide complete dagification of forests and acyclic dags even in the presence
of list, bag and set operators [22,24].

In the terminology of this paper, complete dagification is the transformation of a term
automaton A = (Q, Σ, q0, δ, �) to a term automaton Ad = (Qd, Σ, qd

0 , δd, �d) such that
the following properties hold.

1. There is a surjective function f : Q −→ Qd such that q and f(q) represent equivalent
terms (are bisimilar) for all q ∈ Q.

2. For all q, q′ ∈ Q, q and q′ represent equivalent terms (are bisimilar) if and only if
f(q) = f(q′).

Intuitively, complete dagification collapses all equivalent states in the original term automa-
ton into a single node. We can associate the state f(q) with q by representing q as a record
with a field containing its dagified state f(q). After complete dagification of A we can answer
any equivalence query: “Given q, q′ ∈ A, are q and q′ bisimilar (do they represent equivalent
types)?” in constant time: Look up f(q) and f(q′) in the records for q and q′, respectively,
and check if they are equal. If so, q and q′ are bisimilar; if not, q and q′ are not bisimilar.

Definition 1 (Acyclic Term Automaton) A term automaton is acyclic if there exists a
total order < on Q such that δ(q, i) > q for all q, i for which δ(q, i) is defined.

234 Somesh Jha et al.

In other words, a term automaton is acyclic if it contains no cycle of transitions. Acyclic
term automata represent all and only nonrecursive types (types formed without the use of
the fixpoint operator µ). A term automaton is a forest (set of trees), if every state has at
most one predecessor; that is, for each q ∈ Q there is at most one q′ ∈ Q such that δ(q′, i) = q
for some i.

Theorem 1 [Paige and Yang [22,24]] Let A = (Q, Σ, q0, δ, �) be an acyclic term automa-
ton and q1, q2 ∈ Q. We can decide in time O(n + m) whether q1 and q2 represent equivalent
terms; that is, whether (q1, q2) ∈ R. Here, n = |Q|, the size of Q, and m = |δ|, the number
of transitions in δ.

Proof : If A is a pair of trees rooted at q1 and q2, respectively, then this theorem is a direct
consequence of Paige and Yang [24, Theorem 2]. The complete dagification of the term
automaton corresponds to Stage 2 of Paige and Yang’s transformation of an input string in
their external language to an abstract syntax dag (ASD). The term τ → τ ′ here corresponds
to the the tuple (list) [→, τ, τ ′] in their external language, and τ1 × . . .× τn corresponds to
[×, 〈τ1, . . . , τn〉]. Note that the angled brackets in 〈τ1, . . . , τn〉 signal a multiset expression,
which captures the associativity and commutativity of the

∏n-operator in our term language.
Paige and Yang’s ASD construction also works in time O(m+n) if A is already partially

dagified. This follows from Lemmas 1 and 2 in their paper. �

Let us define the size of a term automaton A = (Q,Σ, q0, δ, l) to be |Q| + |δ|; i.e., the
sum of the number of states and transitions in the automaton.

Corollary 2 For nonrecursive types τ1, τ2 represented by acyclic term automata A1, A2,
each of size at most n, we can decide (τ1, τ2) ∈ R in O(n) time.

Proof : The two automata A1, A2 can be turned into a single automaton of size at most 2n,
by taking the disjoint union of their states and transitions. The result then follows from
Theorem 1. �

5 O(n log n)-Time Type Equivalence for Recursive Types

Assume that we are given two recursive types τ1 and τ2 that are represented as two term
automata A1 and A2. Lemma 1 proves that τ1

∼= τ2 (or (τ1, τ2) ∈ R) if and only if there
is a reflexive bisimulation C between A1 and A2 such that the initial states of the term
automata A1 and A2 are related by C. Lemma 3 essentially reduces the problem of finding a
reflexive bisimulation C between A1 and A2 to finding a size-stable coarsest partition [12,23].
Theorem 3 uses the algorithm of Paige and Tarjan to determine in O(n log n) time (n is the
sum of the sizes of the two term automata) whether there exists a reflexive bisimulation C
between A1 and A2.

Throughout this section, we will use A1, A2 to denote two term automata over the al-
phabet Σ:

A1 = (Q1, Σ, q01, δ1, �1) A2 = (Q2, Σ, q02, δ2, �2).
We assume that Q1 ∩Q2 = ∅. Define Q = Q1 ∪Q2, δ : Q× ω → Q where δ = δ1 ⊕ δ2, and
� : Q→ Σ, where � = �1 ⊕ �2, where ⊕ denotes disjoint union of two functions. We say that
A1, A2 are bisimilar if and only if there exists a relation C ⊆ Q × Q, called a bisimulation
between A1 and A2, such that:
– if (q, q′) ∈ C, then �(q) = �(q′)
– if (q, q′) ∈ C and �(q) =→,

then (δ(q, 0), δ(q′, 0)) ∈ C and (δ(q, 1), δ(q′, 1)) ∈ C
– if (q, q′) ∈ C and �(q) =

∏n, then there exists a bijection b : {0 . . . n− 1} → {0 . . . n− 1}
such that for all i ∈ {0 . . . n− 1} we have that: (δ(q, i), δ(q′, b(i))) ∈ C.

Efficient Type Matching 235

Notice that the bisimulations between A1 and A2 are closed under union, therefore, there
exists a largest bisimulation between A1 and A2. It is straightforward to show that the
identity relation on Q is a bisimulation, and that any reflexive bisimulation is an equivalence
relation. Hence, the largest bisimulation is an equivalence relation.

Lemma 1 For types τ1, τ2 that are represented by the term automata A1, A2, respectively,
we have (τ1, τ2) ∈ R if and only if there is a reflexive bisimulation C between A1 and A2

such that (q01, q02) ∈ C.

Proof : Suppose (τ1, τ2) ∈ R. Define: C = { (q, q′) ∈ Q×Q | (λα.�(δ̂(q, α)), λα.�(δ̂(q′, α))) ∈
R}. It is straightforward to show that C is a bisimulation between A1 and A2, and that
(q01, q02) ∈ C; we omit the details.

Conversely, let C be a reflexive bisimulation between A1 and A2 such that (q01, q02) ∈ C.
Define: R = { (σ1, σ2) | (q, q′) ∈ C ∧ σ1 = λα.�(δ̂(q, α)) ∧ σ2 = λα.�(δ̂(q′, α)) }. From
(q01, q02) ∈ C, we have (τ1, τ2) ∈ R. It is straightforward to prove that R is a bisimulation;
again, we omit the details. From (τ1, τ2) ∈ R and R being a bisimulation, we conclude that
(τ1, τ2) ∈ R. �

A partitioned graph is a 3-tuple (U,E, P), where U is a set of nodes, E ⊆ U × U is an edge
relation, and P is a partition of U . A partition P of U is a set of pairwise disjoint subsets of
U whose union is all of U . The elements of P are called its blocks. If P and S are partitions
of U , then S is a refinement of P if and only if every block of S is contained in a block of P .

A partition S of a set U can be characterized by an equivalence relation K on U such
that each block of S is an equivalence class of K. If U is a set and K is an equivalence
relation on U , then we use U/K to denote the partition of U into equivalence classes for K.

A partition S is size-stable with respect to E if and only if for all blocks B1, B2 ∈ S,
and for all x, y ∈ B1, we have |E(x)∩B2| = |E(y)∩B2|, where E(x) is the set of neighbors
{y | (x, y) ∈ E}. If E is clear from the context, we will simply use size-stable. We will
repeatedly use the following characterization of size-stable partitions.

Lemma 2 For an equivalence relation K, we have that U/K is size-stable if and only if for
all (u, u′) ∈ K, there exists a bijection π : E(u) → E(u′) such that for all u1 ∈ E(u), we
have (u1, π(u1)) ∈ K.

Proof : Suppose that U/K is size-stable. Let (u, u′) ∈ K. Let B1 be the block of U/K which
contains u and u′. For each block B2 of U/K, we have that |E(u) ∩B2| = |E(u′) ∩B2|. So,
for each block B2 of U/K, we can construct a bijection from E(u)∩B2 to E(u′)∩B2, such
that for all u1 ∈ E(u) ∩ B2, we have (u1, π(u1)) ∈ K. These bijections can then be merged
to a single bijection π : E(u) → E(u′) with the desired property.

Conversely, suppose that for all (u, u′) ∈ K, there exists a bijection π : E(u) → E(u′)
such that for all u1 ∈ E(u), we have (u1, π(u1)) ∈ K. Let B1, B2 ∈ U/K, and let x, y ∈ B1.
We have that (x, y) ∈ K, so there exists a bijection π : E(x) → E(y) such that for all
u1 ∈ E(x), we have (u1, π(u1)) ∈ K. Each element of E(x) ∩ B2 is mapped by π to an
element of E(y)∩B2. Moreover, each element of E(y)∩B2 must be the image under π of an
element of E(x)∩B2. We conclude that π restricted to E(x)∩B2 is a bijection to E(y)∩B2,
so |E(x) ∩B2| = |E(y) ∩B2|. �

Given two term automata A1, A2, we define a partitioned graph (U,E, P):
U = Q ∪ { 〈q, i〉 | q ∈ Q ∧ δ(q, i) is defined }
E = { (q, 〈q, i〉) | δ(q, i) is defined } ∪ { (〈q, i〉, δ(q, i)) | δ(q, i) is defined }
L = { (q, q′) ∈ Q×Q | �(q) = �(q′) }

∪ { (〈q, i〉, 〈q′, i′〉) | �(q) = �(q′) and if �(q) =→, then i = i′ }
P = U/L.

The graph contains one node for each state and transition in A1, A2. Each transition in
A1, A2 is mapped to two edges in the graph. This construction ensures that if a node in the

236 Somesh Jha et al.

graph corresponds to a state labeled
∏n, then that node will have n distinct successors in

the graph. This is convenient when establishing a bijection between the successors of two
nodes labeled

∏n.
The equivalence relation L creates a distinction between the two successors of a node

that corresponds to a state labeled →. This is done by ensuring that if (〈q, i〉, 〈q, i′〉) ∈ L
and �(q) =→, then i = i′. This is convenient when establishing a bijection between the
successors of two nodes labeled →.

Lemma 3 There exists a reflexive bisimulation C between A1 and A2 such that (q01, q02) ∈ C
if and only if there exists a size-stable refinement S of P such that q01 and q02 belong to the
same block of S.

Proof : Let C ⊆ Q×Q be a reflexive bisimulation between A1 and A2 such that (q01, q02) ∈ C.
Define an equivalence relation K ⊆ U × U as follows:

K = C ∪ { (〈q, i〉, 〈q′, i〉) | (q, q′) ∈ C ∧ �(q) = �(q′) = → }
∪ { (〈q, i〉, 〈q′, i′〉) | (q, q′) ∈ C ∧ (δ(q, i), δ(q′, i′)) ∈ C ∧ �(q) = �(q′)

∧ �(q) �= → }
S = U/K.

From (q01, q02) ∈ C, we have (q01, q02) ∈ K, so q01 and q02 belong to the same block of S.
We will now show that S is a size-stable refinement of P .

Let (u, u′) ∈ K. From Lemma 2 we have that it is sufficient to show that there exists a
bijection π : E(u) → E(u′), such that for all u1 ∈ E(u), we have (u1, π(u1)) ∈ K. There are
three cases. First, suppose (u, u′) ∈ C. We have

E(u) = { 〈u, i〉 | δ(u, i) is defined } and E(u′) = { 〈u′, i′〉 | δ(u′, i′) is defined }.
Let us consider each of the possible cases of u and u′. If �(u) = �(u′) ∈ Γ , then E(u) =
E(u′) = ∅, and the desired bijection exists trivially. Next, if �(u) = �(u′) =→, then

E(u) = { 〈u, 0〉, 〈u, 1〉 } and E(u′) = { 〈u′, 0〉, 〈u′, 1〉 }
so the desired bijection is π : E(u) → E(u′), where π(〈u, 0〉) = 〈u′, 0〉 and π(〈u, 1〉) = 〈u′, 1〉,
because (〈u, 0〉, 〈u′, 0〉) ∈ K and (〈u, 1〉, 〈u′, 1〉) ∈ K. Finally, if �(u) = �(u′) =

∏n, then
E(u) = { 〈u, i〉 | δ(u, i) is defined } and E(u′) = { 〈u′, i′〉 | δ(u′, i′) is defined }.

From (u, u′) ∈ C, we have a bijection b : {0 . . . n − 1} → {0 . . . n − 1} such that ∀i ∈
{0 . . . n− 1} : (δ(u, i), δ(u′, b(i))) ∈ C. From that, the desired bijection can be constructed.

Second, suppose u = 〈q, i〉 and u′ = 〈q′, i〉, where (q, q′) ∈ C, and �(q) = �(q′) =→. We
have:

E(u) = { δ(q, i) } and E(u′) = { δ(q′, i) },
and from (q, q′) ∈ C we have (δ(q, i), δ(q′, i)) ∈ C ⊆ K, so the desired bijection exists.

Third, suppose u = 〈q, i〉 and u′ = 〈q′, i′〉, where (q, q′) ∈ C, (δ(q, i), δ(q′, i′)) ∈ C,
�(q) = �(q′), and �(q) �=→. We have

E(u) = { δ(q, i) } and E(u′) = { δ(q′, i′) },
and (δ(q, i), δ(q′, i′)) ∈ C ⊆ K, so the desired bijection exists.

Conversely, let S be a size-stable refinement of P such that q01 and q02 belong to the
same block of S. Define:

K = { (u, u′) ∈ U × U | u, u′ belong to the same block of S }
C = K ∩ (Q×Q).

Notice that (q01, q02) ∈ C and that C is reflexive. We will now show that C is a bisimulation
between A and A′.

First, suppose (q, q′) ∈ C. From S being a refinement of P we have (q, q′) ∈ L, so
�(q) = �(q′).

Second, suppose (q, q′) ∈ C and �(q) =→. From the definition of E we have
E(q) = { 〈q, 0〉, 〈q, 1〉 } and E(q′) = { 〈q′, 0〉, 〈q′, 1〉 }.

Efficient Type Matching 237

From S being size-stable, (q, q′) ∈ C ⊆ K, and Lemma 2 we have that there exists a bijection
π : E(q) → E(q′) such that for all u ∈ E(q) we have that (u, π(u)) ∈ K. From K ⊆ L and
�(q) =→ we have that there is only one possible bijection π:

π(〈q, 0〉) = 〈q′, 0〉 and pi(〈q, 1〉) = 〈q′, 1〉,
so (〈q, 0〉, 〈q′, 0〉) ∈ K and (〈q, 1〉, 〈q′, 1〉) ∈ K. From the definition of E we have, for i ∈ {0, 1},

E(〈q, i〉) = δ(q, i) and E(〈q′, i〉) = δ(q′, i),
and since S is size-stable, we have, for i ∈ {0, 1}, (δ(q, i), δ(q′, i)) ∈ K. Moreover, for i ∈
{0, 1}, we have (δ(q, i), δ(q′, i)) ∈ Q×Q, and so we can conclude (δ(q, i), δ(q′, i)) ∈ C.

Third, suppose (q, q′) ∈ C and �(q) =
∏n. From the definition of E we have

E(q) = { 〈q, i〉 | δ(q, i) is defined } and E(q′) = { 〈q′, i〉 | δ(q′, i) is defined }.
Notice that |E(q)| = |E(q′)| = n. From S being size-stable, (q, q′) ∈ C ⊆ K, and Lemma 2,
we have that there exists a bijection π : E(q) → E(q′) such that for all u ∈ E(q) we have
that (u, π(u)) ∈ K. From π we can derive a bijection b : {0 . . . n − 1} → {0 . . . n − 1} such
that ∀i ∈ {0 . . . n− 1}: (〈q, i〉, 〈q′, b(i)〉) ∈ K. From the definitions of E and E′ we have that
for i ∈ {0 . . . n− 1},

E(〈q, i〉) = { δ(q, i) } and E(〈q′, i〉) = { δ(q′, i) },
and since S is size-stable, and, for all i ∈ {0 . . . n − 1}, (〈q, i〉, 〈q′, b(i)〉) ∈ K, we have
(δ(q, i), δ(q′, b(i))) ∈ K. Moreover, we have (δ(q, i), δ(q′, b(i))) ∈ Q × Q, and so we can
conclude (δ(q, i), δ(q′, b(i))) ∈ C. �

Recall that the size of a term automaton A = (Q,Σ, q0, δ, l) is |Q|+ |δ|; i.e., the sum of
the number of states and transitions in the automaton.

Theorem 3 For types τ1, τ2 represented by term automata A1, A2 of size at most n, we can
decide (τ1, τ2) ∈ R in O(n log n) time.

Proof : From Lemma 1 we have that (τ1, τ2) ∈ R if and only if there is a reflexive bisimulation
C between A1 and A2 such that (q01, q02) ∈ C. From Lemma 3 we have that there exists
a reflexive bisimulation C between A1 and A2 such that (q01, q02) ∈ C if and only if there
exists a size-stable refinement S of P such that q01 and q02 belong to the same block of S.

Paige and Tarjan [23] give an O(m log p) algorithm to find the coarsest size-stable refine-
ment of P , where m is the size of E and p is the size of the universe U .

Our algorithm first constructs (U,E, P) from A1 and A2, then runs the Paige-Tarjan
algorithm to find the coarsest size-stable refinement S of P , and finally checks whether q01

and q02 belong to the same block of S. If A1 and A2 are of size at most n, then the size of
E is at most 2n, and the size of U is at most 2n, so the total running time of our algorithm
is O(2n log(2n)) = O(n log n). �

Next, we illustrate how our algorithm determines that equivalence between the types.
Details of the algorithm can be found in [23]. Consider two types I1 and J1 defined in
Section 2. The set of types corresponding to the two interfaces are:
{I1, I2,m1,m2,m3,m4, int,float} and {J1, J2, n1, n2, n3, n4, int,float}

Note that we abuse notation and use m1,m2, etc, to denote the types of the methods with
those names. Figure 4 shows various steps of our algorithm. For simplicity, the figure only
shows the blocks of actual types, but not the blocks of the extra nodes of the form 〈q, i〉.
The blocks in the first row are based on labels, e.g., states labeled with × are in the same
block. In the next step, the block containing the methods are split based on the type of the
result of the method, e.g., methods m1 and n4 both return float, so they are in the same
block. In the next step (corresponding to the third row) the block {I1, I2, J1, J2} are split.
The final partition, where block {m3,m4, n1, n2} is split, is shown in the fourth row.

Our algorithm can be tuned to take specific user needs into account. This is done simply
by modifying the definition of the equivalence relation L. For example, suppose a user cares

238 Somesh Jha et al.

int float

I1 I2 J1 J2 int

int

int

float

float

float

m1 m2 m3 m4 n1 n2 n3 n4

m1 n4

m1 n4

m1 n4

m2 n3

m2 n3

m2 n3

m3 m4 n1 n2

m3 m4 n1 n2

m3 n2 m4 n1

I1 J2

I1 J2

I2 J1

I2 J1

I1 I2 J1 J2

Fig. 4. Blocks of types.

about the order of the arguments to a method. This means that the components of the
product type that models the argument list should not be allowed to be shuffled during
type matching. We can prevent shuffling by employing the same technique that the current
definition of L uses for function types. The idea is to insist that two component types may
only be matched when they have the same component index.

Another example of the tunability of our algorithm involves the modifiers in Java. Sup-
pose a programmer is developing a product that is multi-threaded. In this case the program-
mer may only want to match synchronized methods with other synchronized methods. This
can be handled easily in our framework by changing L such that two method types may only
be matched when they are both synchronized. On the other hand if the user is working on
a single-threaded product, the keyword synchronized can be ignored. The same observation
applies to other modifiers such as static. See the discussion, Section 8.4, for other variations
of type matching that can be handled by our algorithm.

6 Our Implementation

We have implemented our algorithm in Java and the current version is based on the code
written by Wanjun Wang. The implementation and documentation are freely available at
http://www.cs.purdue.edu/homes/tzhao/matching/matching.htm .

The current version has a graphical user interface so that users may input type definitions
written in a file and also may specify restrictions on type isomorphism.

Suppose we are given the following file with four Java interfaces.

interface I1 {
float m1 (I1 a, int b);
int m2 (I2 a);

}
interface J1 {

I1 n1 (float a);
J2 n2 (float a);

}

interface I2 {
J2 m3 (float a);
I1 m4 (float a);

}
interface J2 {

int n3 (J1 a);
float n4 (int a, J2 b);

}

The implementation, as illustrated in the Figure 5, will read and parse the input file and
then transform the type definitions into partitions of numbers with each type definition and
dummy type assigned a unique number. The partitions will be refined by the Paige–Tarjan
algorithm until it is size-stable as defined in this paper. Finally, we will be able to read the
results from the final partitions. Two types are isomorphic if the numbers assigned to them
are in the same partition.

Efficient Type Matching 239

�

�

�

�

-input file
-restrictions

Transform
type sets into
partitions

Refine the

Paige-Tarjan
algorithm

partitions with

Parsers forGraphical Interface
-input file window
-restriction window
-output window
-focus window

Fig. 5. Schematic diagram for the implementation.

The implementation will give the following output:
I1 = J2, I2 = J1

I1.m1 = J2.n4, I1.m2 = J2.n3, and I2.m3 = I2.m4 = J1.n1 = J1.n2 .
We can see that the types of interfaces I2 and J1 are isomorphic and moreover, all method
types of I2, J1 match. Suppose that we have additional information about the method types
such that only method m3 and n1 should have isomorphic types. We can restrict the type
matching by adding I2.m3 = J1.n1 to the restrictions window of the user interface. The new
matching result is:

I1 = J2, I2 = J1

I1.m1 = J2.n4, I1.m2 = J2.n3, I2.m3 = J1.n1, and I2.m4 = J1.n2 .
We can focus on the matching of two interface types such as I2, J1 in the focus windows of
the user interface, which will match their methods one to one.

7 Subtyping of Recursive Types

In this section we discuss subtyping and formalize it using a simulation relation. We also
discuss reasons why the algorithm given in Section 5 is not applicable to subtyping of
recursive types. Consider the interfaces I1 and I2 shown in Figure 6, and suppose a user is
looking for I2. The interfaces I1 and I2 can be mapped to the following recursive types:

τ1 = µα.((float × boolean) → α)× (α → boolean)
τ2 = µβ.(int × boolean) → β)

interface I1 {
I1 m (float a, boolean b);

boolean p (I1 j);
}

interface I2 {
I2 m (int i, boolean b);

}

Fig. 6. Interfaces I1 and I2.

Assuming that int is a subtype of float (we can always coerce integers into floats) we have
that τ1 is a subtype of τ2. Therefore, the user can use the interface I1. There are several points
to notice from this example. In the context of subtyping, we need two kinds of products:

240 Somesh Jha et al.

one that models a collection of methods and another that models sequence of parameters. In
our example, the user only specified a type corresponding to method m. Therefore, during
the subtyping algorithm method p should be ignored. However, the parameters of method
m are also modeled using products and none of these can be ignored. Therefore, we consider
two types of product type constructors in our type systems and the subtyping rule for these
two types of products are different.

As stated before, a type is a regular term, in this case over the ranked alphabet
Σ = Γ ∪ {→} ∪ {∏n

, n ≥ 2} ∪ {×n, n ≥ 2}.
Roughly speaking,

∏n and ×n will model collection of parameters and methods respectively.
Also assume that we are given a subtyping relation on the base types Γ . If τ1 is a subtype
of τ2, we will write it as τ1 ' τ2. A relation S is called a simulation on types if it satisfies
the following conditions:
– if (σ, τ) ∈ S and σ(ε) ∈ Γ , then τ(ε) ∈ Γ and σ(ε) ' τ(ε).
– if (σ, τ) ∈ S and σ(ε) ∈ ({→} ∪ {∏n

, n ≥ 2}), then σ(ε) = τ(ε).
– if (σ1 → σ2, τ1 → τ2) ∈ S, then (τ1, σ1) ∈ S and (σ2, τ2) ∈ S.
– if (

∏n−1
i=0 σi,

∏n−1
i=0 τi) ∈ S, then there exists a bijection b : {0 . . . n − 1} → {0 . . . n − 1}

such that for all i ∈ {0 . . . n− 1}, we have (σi, τb(i)) ∈ S.
– Suppose (σ, τ) ∈ S, σ(ε) = ×n, and σ = ×n−1

i=0 σi. If τ(ε) �∈ {×m,m ≥ 2}, then there
exists a j ∈ {0 . . . n − 1} such that (σj , τ) ∈ S. Otherwise, assume that τ(ε) = ×m,
where m ≤ n and τ = ×m−1

i=0 τi. In this case, then there exists an injective function
c : {0 . . . m− 1} → {0 . . . n− 1} such that for all i ∈ {0 . . . m− 1}, we have (σc(i), τi) ∈ S.
Notice that this rule allows ignoring certain components of σ.

As is the case with bisimulations, simulations are closed under union, therefore there exists
a largest simulation (denoted by S).

Let A1, A2 denote two term automata over Σ:
A1 = (Q1, Σ, q01, δ1, �1) and A2 = (Q2, Σ, q02, δ2, �2).

We assume that Q1 ∩Q2 = ∅. Define Q = Q1 ∪Q2, δ : Q× ω → Q where δ = δ1 ⊕ δ2, and
� : Q→ Σ, where � = �1 ⊕ �2, where ⊕ denotes disjoint union of two functions. We say that
A2 simulates A1 (denoted by A1 ' A2) if and only if there exists a relation D ⊆ Q × Q,
called a simulation relation between A1 and A2, such that:
– if (q, q′) ∈ D and �(q) ∈ Γ , then �(q′) ∈ Γ and �(q) ' �(q′)).
– if (q, q′) ∈ D and �(q) ∈ ({→} ∪ {∏n

, n ≥ 2}), then �(q) = �(q′).
– if (q, q′) ∈ D and �(q) =→, then (δ(q′, 0), δ(q, 0)) ∈ D and (δ(q, 1), δ(q′, 1) ∈ D.
– if (q, q′),∈ D and �(q) =

∏n, then there exists a bijection b : {0 . . . n−1} → {0 . . . n−1}
such that for all i ∈ {0 . . . n− 1}, we have: (δ(q, i), δ(q′i)) ∈ D.

– Suppose (q, q′) ∈ D and �(q) = ×n. If �(q′) �∈ {×m,m ≥ 2}, then there exists a j ∈
{0 . . . n−1} such that (δ(q, j), q′) ∈ D. Otherwise, assume that �(q′) = ×m. Then m ≤ n
and there exists an injective function c : {0 . . . m − 1} → {0 . . . n − 1} such that for all
i ∈ {0 . . . m− 1}, we have (δ(q, c(i)), δ(q′, i)) ∈ D.

Notice that the simulations between A1 and A2 are closed under union, therefore there exists
a largest simulation between A1 and A2. The proof of Lemma 4 is similar to the proof of
Lemma 1 and is omitted.

Lemma 4 For types τ1, τ2 that are represented by the term automata A1, A2, respectively,
we have (τ1, τ2) ∈ S if and if only there is a reflexive simulation D between A1 and A2 such
that (q01, q02) ∈ D.

The largest simulation between the term automata A1 and A2 is given by the follow-
ing greatest fixed point νD.∀q, q′.sim(q, q′, D), where D ⊆ Q1 × Q2 and the predicate
sim(q, q′, D) is the conjunction of the five conditions which appear in the definition of the

Efficient Type Matching 241

simulation relation between two automata. Let n and m be the size of the term automata
A1 and A2, respectively. Since nm is a bound on the size of D, the number of iterations
in computing the greatest fixed point is bounded by nm. In general, the relation D (or for
that matter the simulation relation) is not symmetric. On the other hand, the bisimulation
relation was an equivalence relation, and so could be represented as a partition on the set
Q1∪Q2, or in other words, partitions give us a representation of an equivalence relation that
is linear in the sum of the sizes of the set of states Q1 and Q2. The Paige–Tarjan algorithm
uses the partition representation of the equivalence relation. Since D is not symmetric (and
thus not an equivalence relation), it cannot be represented by a partition. This is the crucial
reason why our previous algorithm cannot be applied to subtyping.

8 Conclusion

In this paper we addressed the problem of matching recursive and nonrecursive types. We
presented algorithms with O(n log n) and O(n) time complexities that decide whether two
types are equivalent. To our knowledge, these are the most efficient algorithms for type
matching with and without type recursion, respectively. Our results are applicable to the
problem of matching signatures of software components. Applications to Java were also
discussed. Issues related to subtyping of recursive types were also addressed.

We conclude by discussing type matching of sets of types; related work; conceivable
applications; and future work.

8.1 Multiple Type Matching

Recall Theorem 3. The algorithm employed actually works on more than 2 types and pre-
serves its complexity even if types are represented by graphs with nodes shared amongst
multiple types (corresponding to type abbreviations). Without explicit proof we state that
Theorem 3 can be generalized as follows:

Theorem 4 For types τ1, τ2, . . . , τm represented by nodes Q0 = q1, q2, . . . , qm in term au-
tomaton A of size at most n, we can preprocess A in time O(n log n) such that :
– Q0 can be partitioned into blocks of pairwise matching types in time O(m), and the blocks

can be output in the same time.
– For any 1 ≤ i, j ≤ m it can be decided in O(1) time whether (the types denoted by) qi

and qj match or not.
– For any 1 ≤ i ≤ m the set [qi] ⊆ Q0 of (nodes denoting) types matching qi can be output

in time O(|[qi]|).
The corresponding strengthening of Theorem 1, with O(n) instead of O(n log n), holds for
acyclic A. These are strengthenings due to the particular algorithms used; they are not a
property of the problem. To wit, type matching without commutativity of our k-ary products
can be done in time O(nα(n, n) for a pair of nodes q1, q2 using unification closure, but the
best known algorithm for doing it for m nodes q1, . . . , qm is our algorithm (Theorem 4),
which requires time Θ(n log n). (Note that solving this problem using unification closure on
all pairs qi, qj takes time O(nm2).) Furthermore, the strengthening does not hold for binary
associative-commutative operators, as in Zibin, Gil and Considine [34]. This is due to an
exponential blow-up in the preprocessing of binary associativity in a setting with shared
data to a version with lists (n-ary products in our setting); see the related work discussion
below.

8.2 Related Work

Word problem with Associative-Commutative Operators
Zibin, Gil, and Considine [34] present a linear-time type equivalence algorithm for nonrecur-
sive types and an O(n log2 n) algorithm for a richer equivalence with distributivity. Their

242 Somesh Jha et al.

linear-time algorithm is incomparable to ours, as it handles an equivalence around a binary
associative-commutative product operator, but requires a nonshared input data represen-
tation to achieve linearity. The equivalence solved by their linear-time algorithm is defined
by:

(1) A× 1 = A
(2) A → 1 = 1
(3) 1 → A = A
(4) A×B = B ×A (commutativity)
(5) A× (B × C) = A× (B × C) (associativity)
(6) A → (B → C) = (A×B) → C (Currying)

where 1 is the unit type and A,B,C range over simple types with function type and product
constructors and a nonempty set of constant types. Their solution consists of first preprocess-
ing the input, a pair of type terms, by rewriting them according to the axioms, excepting
commutativity, in left-to-right direction. The preprocessed terms are then solved using ba-
sic multiset discrimination techniques. The combined time of preprocessing and multiset
discrimination is linear if the inputs are represented as trees; that is, without sharing of
subterms. We observe that with shared representations, preprocessing becomes exponential
in time and space; this is due to associativity rewriting. (Note that Currying does not make
it worse, and the neutrality axioms are harmless.) To wit, consider Ai+1 = Ai × Ai for
i ≥ 0, where A0 denotes some constant type. Represented as a term automaton, An requires
O(n) space, but associativity rewriting is applicable O(2n) times, resulting in a term type
representation (. . . (A0 × A0) . . . × A0) with 2n occurrences of A0 and a space requirement
of Θ(2n), with or without sharing.

Zibin, Gil, and Considine rediscover some of the basic multiset discrimination techniques
for integers. (They are apparently unaware of Paige et al.’s previous work, since no reference
to any of it is given in their article.) They require, however, a constant-time allocated
integer array of size U for multiset discrimination of integers in the interval [1 . . . U]. This is
impractical since 32-bit unsigned integers require an array with 4 billion elements, and 64-bit
unsigned integers would require approximately 1020 bytes. Furthermore, their computational
model assumes that arrays of arbitrary size (including arrays whose length is exponential in
the size of the input) can be allocated in constant time. Using a hash table implementation
would be a practical alternative, but destroy the worst-case linear asymptotic bound of
linear type isomorphism. Instead, as observed by Paige previously, we propose using tuple
multiset discrimination on large numbers: each nonnegative integer v can be represented
by its number representation ak . . . a0 with 0 ≤ ai < r for 0 ≤ i ≤ k for some radix r
such that v = Σk

i=0air
i. Multiset discrimination of such representations requires only one

auxiliary array with r elements and can be performed in linear time and space. (Input size
is counted as the number of bits. No word level parallelism is exploited here.) For example,
64-bit integers can be discriminated realistically by treating each number as an 8-tuple of
bytes (r = 28 = 256) using a single global array of 256 elements or as a 4-tuple of 16-bit
values (r = 216 = 65536) using an array with 65536 elements.
Subtyping with Commutative Products
In a continuation of our work, Di Cosmo, Pottier, and Rémy [15] present an algorithm
for deciding the subtyping problem discussed in Section 7. Their algorithm follows the same
algorithmic strategy: a bipartite matching algorithm is iterated a quadratic number of times.

8.3 Potential Applications

Next we discuss potential applications of our algorithms.
CORBA: The CORBA approach utilizes a separate definition language called IDL. Objects
are associated with language-independent interfaces defined in IDL. These interfaces are then
translated into the language being used by the client. The translated interface then enables

Efficient Type Matching 243

the clients to call the objects. Since the IDL interfaces have to be translated into several
languages, their type system is very restrictive. Therefore, IDL interfaces lack expressive
power because, intuitively speaking, the type system used in IDL has to be the intersection
of the type systems of the languages language it supports. The drawbacks of CORBA-style
approaches to interoperability are well articulated in [4, 5].
Polyspin and Mockingbird : The Polyspin and Mockingbird approaches do not require a
common interface language, such as IDL. In both these approaches, clients and objects are
written in languages with separate type systems, and an operation that crosses the language
boundary is supported by bridge code that is automatically generated. Therefore, systems
such as Polyspin and Mockingbird support seamless interoperability since the programmer is
not burdened with writing interfaces in a special interface language such as IDL in CORBA.
Polyspin supports only finite types. Mockingbird on the other hand supports recursive types,
including records, linked lists, and arrays. The type system used in Mockingbird is called
the Mockingbird Signature Language or MockSL. The problem of deciding type equivalence
for MockSL remains open [3]. In this paper we considered a type system which is related to
the one used in Mockingbird. However, we are investigating a translation from MockSL to
recursive types.
Megaprogramming : Techniques suitable for very large software systems have been a major
goal of software engineering. The term megaprogramming was introduced by DARPA to
motivate this goal [6]. Roughly speaking, in megaprogramming, megamodules provide a
higher level of abstraction than modules or components. For example, a megamodule can
encapsulate the entire logistics of ground transportation in a major city. Megaprogramming
is explained in detail in [31]. Interoperability issues arise when megaprograms are constructed
using megamodules, see [31, Section 4.2]. We believe that the framework presented in this
paper can be used to address mismatch between interfaces of megamodules.

8.4 Discussion and Future Work

Possible future work includes investigating type inference for programs in the presence of
implicit type matching (type isomorhism) and subtyping as studied in this paper. The recent
paper of Coppo [13] on type inference with recursive type equations may contain applicable
techniques.

Brandt and Henglein [7] show how to derive semantically unique coercions (bridge code)
interpreting Amadio-Cardelli style (read: no commutativity) subtyping and type isompor-
phism. It should be noted, however, that completely automatic generation of adapter code
in the presence of type matching with commutativity is risky since it is semantically ambigu-
ous: Any method with two parameters of equal type matches another method in at least
two semantically different ways.

Rittri [26] motivated type matching based on type isomorphisms by the problem of
searching existing function libraries. Dating back to Thatte’s work on synthesizing interface
adapters [30] and more recently emphasized by Di Cosmo, Pottier, and Rémy [15], it has
been argued that record subtyping is important for type-based component matching in an
object-oriented language setting since it models “ignoring” methods in an implementation
that are not required for an application. Apart from subtyping, other notions of matching
may be of practical interest, especially in a multilanguage setting such as Mockingbird; e.g.,
including functions operating on arrays that require an explicit size parameter in a search
for functions that operate on arrays (only).

Type matching has been formulated as a “one-on-one” problem: Does this desired func-
tion type signature match one particular (library) function? A practically more natural
formulation, however, is to find the set of functions a desired type signature matches in
a given library and, more generally yet, to do so for multiple desired type signatures at
a time. In other words, a natural application setting is where a m desired interfaces are

244 Somesh Jha et al.

matched against a potentially large library of n components. This corresponds to perform-
ing type matching for a potentially large set of types. If only a type matching function of
two type arguments (one-on-one matching) is available this requires mn applications of such
a function, which by itself results in at least quadratic time requirements. As discussed in
Section 8.1, our algorithms generalize to processing an arbitrary number of arguments: they
partition the desired interfaces and all components in one go in linear time without recursive
types and, with a logarithmic factor, for recursive types. Since the algorithms appear to be
implementable with interactive response times for even large libraries, it appears feasible
to use them in an interactive environment where type signatures are interactively changed
for matching purposes (only). Each iteration produces a partitioning, which may then be
used as a basis for refinement in further iterations. For example, in a first pass all primitive
types might be treated as equivalent. Or some types might be treated as 1, the neutral
element for product types. Doing so provides some of the benefits of record subtyping, but
also allows treatment beyond that: e.g., treating type int as 1 will match a method invoca-
tion f(float [] with a C-library function g(float [], int) that requires an explicit array length
parameter; and vice versa. Note that the presently known best algorithms for type matching
with record subtyping work in a one-on-one fashion and have high complexity, which makes
them unlikely candidates for use in such an iterative and interactive fashion.

Acknowledgments

A preliminary version of this paper, excluding the results of Section 4, and authored by Jha,
Palsberg, and Zhao was presented at FOSSACS 2002. Palsberg was supported by an NSF
CAREER award, CCR–9734265, and by IBM. Henglein would like to acknowledge support
by the Danish Natural Sciences Research Council under Project PLI.

References

1. R. M. Amadio and L. Cardelli: Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):575–631, 1993. Also in Proceedings POPL ’91.

2. M.-V. Aponte and R. Di Cosmo: Type isomorphisms for module signatures. In Proceed-
ings of PLILP ’96, 334–346. Springer (LNCS 1140), 1996.

3. J. Auerbach, C. Barton, and M. Raghavachari: Type isomorphisms with recursive types.
Research Report RC 21247, IBM Research Division, T. J. Watson Research Center,
Yorktown Heights, NY, August 1998.

4. J. Auerbach and M. C. Chu-Carroll: The mockingbird system: A compiler-based ap-
proach to maximally interoperable distributed programming. Research Report RC
20718, IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY,
February 1997.

5. D. J. Barrett, A. Kaplan, and J. C. Wileden: Automated support for seamless interop-
erability in polylingual software systems. In ACM FSE ’96, Fourth Symposium on the
Foundations of Software Engineering, San Francisco, California, October 1996.

6. B. Boehm and B. Scherlis: Megaprogramming. In Proceedings of DARPA Software
Technology Conference, April 28–30, Meridien Corporation, Arlington, VA 1992.

7. M. Brandt and F. Henglein: Coinductive axiomatization of recursive type equality and
subtyping. Fundamenta Informaticae, 33:309–338, 1998. Invited submission to special
issue featuring a selection of contributions to the 3rd Int’l Conf. on Typed Lambda
Calculi and Applications (TLCA), 1997.

8. K. B. Bruce, R. Di Cosmo, and G. Longo: Provable isomorphisms of types. Mathematical
Structures in Computer Science, 2(2):231–247, 1992.

9. J. Cai and R. Paige: Look ma, no hashing, and no arrays neither. In Proc. 18th Annual
ACM Symp. on Principles of Programming Languages, Orlando, Florida, 143–154, 1991.

Efficient Type Matching 245

10. J. Cai and R. Paige: Using multiset discrimination to solve language processing problems
without hashing. Theoretical Computer Science, 145(1–2)(1–2):189–228, 1995.

11. L. Cardelli and P. Wegner: On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4):471–522, December 1985.

12. A. Cardon and M. Crochemore: Partitioning a graph in O(|A| log2 |V |). Theoretical
Computer Science, 19:85–98, 1982.

13. M. Coppo: Type inference with recursive type equations. In Proceedings of FOS-
SACS ’01, Foundations of Software Science and Computation Structures, 184–198.
Springer-Verlag (LNCS 2030), 2001.

14. R. Di Cosmo: Isomorphisms of Types: from λ-calculus to information retrieval and
language design. Birkhäuser, 1995.

15. R. Di Cosmo, F. Pottier, and D. Rémy: Subtyping recursive types modulo associative
commutative products. In Proceedings of TLCA ’05, 7th International Conference on
Typed Lambda Calculus and Applications, 179–193. Springer (LNCS 3461), 2005.

16. B. Courcelle: Fundamental properties of infinite trees. Theoretical Computer Science,
25(1):95–169, 1983.

17. T. Jim and J. Palsberg: Type inference in systems of recursive types with subtyping.
Manuscript, 1997.

18. D. Kozen, J. Palsberg, and M. I. Schwartzbach: Efficient recursive subtyping. Math-
ematical Structures in Computer Science, 5(1):113–125, 1995. Preliminary version in
Proceedings of POPL ’93, Twentieth Annual Sigplan–Sigact Symposium on Principles
of Programming Languages, 419–428, Charleston, South Carolina, January 1993.

19. P. Narendran, F. Pfenning, and R. Statman: On the unification problem for Cartesian
closed categories. In Proceedings, Eighth Annual IEEE Symposium on Logic in Computer
Science, 57–63. IEEE Computer Society Press, 1993.

20. OMG: The common object request broker: Architecture and specification. Technical
Report, Object Management Group, Version 2.3.1, 1999.

21. R. Paige, R. Tarjan, and R. Bonic: A linear time solution to the single function coarsest
partition problem. Theoretical Computer Science, 40:67–84, 1985.

22. R. Paige: Efficient translation of external input in a dynamically typed language. In
B. Pehrson and I. Simon, editors, Proc. 13th World Computer Congress, Vol. 1. Elsevier
Science B.V. (North-Holland), 1994.

23. R. Paige and R. Tarjan: Three partition refinement algorithms. SIAM Journal on
Computing, 16(6):973–989, December 1987.

24. R. Paige and Z. Yang: High level reading and data structure compilation. In Proc. 24th
ACM Sigplan-Sigact Symp. on Principles of Programming Languages, Paris, France,
456–469, ACM Press. January 1997. http://www.acm.org

25. J. Palsberg and T. Zhao: Efficient and flexible matching of recursive types. Information
and Computation, 171:364–387, 2001. Preliminary version in Proceedings of LICS ’00,
Fifteenth Annual IEEE Symposium on Logic in Computer Science, 388–398, Santa Bar-
bara, California, June 2000.

26. M. Rittri: Retrieving library identifiers via equational matching of types. In M. E.
Stickel, editor, Proceedings of the 10th International Conference on Automated Deduc-
tion, volume 449 of LNAI, 603–617, Kaiserslautern, FRG. Springer Verlag. July 1990.

27. M. Rittri: Using types as search keys in function libraries. Journal of Functional Pro-
gramming, 1(1):71–89, 1991.

28. M. Rittri: Retrieving library functions by unifying types modulo linear isomorphism.
RAIRO Theoretical Informatics and Applications, 27(6):523–540, 1993.

29. S. V. Soloviev: The category of finite sets and cartesian closed categories. Journal of
Soviet Mathematics, 22:1387–1400, 1983.

30. S. Thatte: Automated synthesis of interface adapters for reusable classes. In Proceedings
of POPL ’94, 21st Annual Sigplan–Sigact Symposium on Principles of Programming
Languages, 174–187, 1994.

246 Somesh Jha et al.

31. G. Wiederhold, P. Wegner, and S. Ceri: Towards Megaprogramming: A paradigm for
component-based programming. Communications of the ACM, 35(11):89–99, November
1992.

32. A. M. Zaremski and J. M. Wing: Signature matching: a tool for using software libraries.
ACM Transactions on Software Engineering Methodology, 4(2):146–170, April 1995.

33. A. M. Zaremski and J. M. Wing: Specification matching of software components. In Pro-
ceedings of 3rd ACM SIGSOFT Symposium on the Foundation of Software Engineering,
6–17, 1995.

34. Y. Zibin, Y. Gil, and J. Considine: Efficient algorithms for isomorphisms of simple types.
In Proceedings of POPL ’03, Sigplan-Sigact Symposium on Principles of Programming
Languages, 160–171, 2003.

Aspects as Invariants

Douglas R. Smith

Kestrel Institute, 3260 Hillview Avenue, Palo Alto, California 94304, USA. smith@kestrel.edu

Summary. Aspect-Oriented Programming (AOP) offers new insights and tools for the modular
development of systems with crosscutting features. Current tool support for AOP is provided mainly
in the form of code-level constructs. This paper presents a way to express crosscutting features as
logical invariants and then to generate the kind of code that is usually produced from manually
written aspects. In order to state invariants that express crosscutting features, we often need to
reify certain extra-computational values such as history or the runtime call stack. The invariant
approach is illustrated by a variety of examples.
Keywords: invariants, aspect-oriented programming.

1 Introduction

Aspect-Oriented Programming (AOP) contributes to the broad goal of modular program-
ming, with a particular focus on crosscutting concerns [2, 5]. A concern is crosscutting if
its manifestation cuts across the dominant hierarchical structure of a program. A simple
example is an error logging policy — the requirement to log all errors in a system in a stan-
dard format. Error logging necessitates the addition of code that is distributed throughout
the system code, even though the concept is easy to state in itself. Crosscutting concerns
explain a significant fraction of the code volume and interdependencies of a system. The
interdependencies complicate the understanding, development, and evolution of the system.

In this paper we focus on aspects as expressed in AspectJ [9] and recent extensions of it.
AspectJ aspects can be thought of as providing a kind of “whenever” construct: whenever
an event of type e occurs during execution, perform action a. For example, whenever an
exception is thrown, perform a logging action. The runtime events are called join points and
descriptions of join points are called pointcuts. One can think of pointcuts as defining a type
whose elements are joinpoints. The method-like actions to apply at joinpoints are called
advice and the process of inserting advice at code locations in the base code that satisfy a
pointcut is called weaving. An aspect is a modular treatment of a crosscutting concern that
is composed of pointcuts, advice, and other Java code. See [11] for an introduction and many
practical examples.

Our goal is to explore how aspects can be specified more abstractly than in current
languages. We focus primarily on AspectJ, the most widely used implementation of AOP,
for which there is flurry of activity to extend its expressiveness and range of applicability.
This paper explores the proposition that aspects can be specified as invariants, and that
weaving is invariant maintenance.

AspectJ has attracted a a wide user community partly because it is well integrated with
Java: aspects are written in a classlike syntax and have a semantics that closely adheres to
Java semantics. Yet despite its attractiveness to programmers, some issues arise due to the
operational nature of aspects:

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 247–263.
c© 2008 Springer.

248 Douglas R. Smith

1. Intent — What is the intent of an aspect? The program-like nature of an aspect often
obscures it’s intention. It would be desirable to have a more semantic characterization of
aspects, at least as an alternate description. What is the specification for which the aspect
is an implementation?
2. Pointcut Completeness — Does a pointcut exactly characterize the intended runtime
events? AspectJ pointcuts depend on the base program conforming to certain naming con-
ventions, rather than more semantic considerations. It may sometimes be difficult to catch
all relevant joinpoints in the pointcut. For security aspects in particular, it is important not
to overlook a potential joinpoint.
3. Advice Correctness — Does an aspect’s advice correctly realize its intent?
In this paper we present a generative approach to AspectJ that addresses these issues.
The key idea is that an invariant captures the intent of an aspect. Aspect weaving is then
the process of maintaining the invariant by generating and inserting code fragments at
appropriate locations in the base code. In this approach, a pointcut specification is derived
from the invariant and it characterizes the set of code points that might disrupt the invariant.
For each such disruption point in the code, a specification for maintenance code is derived
from the invariant. Code that is generated from the maintenance specification corresponds
to statically woven advice, and could be expressed either directly in AspectJ, or by direct
generation and insertion of code into the system. By expressing an aspect as an invariant
we more clearly separate its intent from its implementation/realization.

The generative techniques in this paper derive from transformational work on incremental
computation, in particular Bob Paige’s pioneering work on Finite Differencing [15]. Finite
Differencing is intended to optimize programs by replacing expensive expressions in loops by
new data structures and incremental computation. It achieves this by maintaining invariants
of the form c = f(x) where c is a fresh variable, x is a vector of program variables, and f(x) is
an expensive expression (usually in a loop). Code to maintain the invariant is automatically
generated and inserted at points where the dependent variables change.

In addition to addressing the three issues listed above, the invariant maintenance ap-
proach also provides novel insights and approaches to the problems of (1) context-specializ-
ation of advice, (2) aspect interference, and (3) evolution in response to base code changes.
After introducing some notation, we work through a variety of examples. We conclude by
revisiting the issues listed above and examining how the invariant approach provides answers
and fresh insight to them.

2 Preliminaries

For purposes of this paper, a behavior of a program can be represented graphically as
alternating states and actions

state0
act0 �� state1

act1 �� state2
act2 �� state3 · · ·

or more formally as a sequence of triples of the form 〈statei, acti, statei+1〉, where states are
a mapping from variables to values, and actions are state-changing operations (i.e., program
statements). The details of representing an action are not important here, although some
form of concrete or abstract syntax suffices. The representation is a system-, language- and
application-specific decision. The operators nil , written [], and append(S, a), written S :: a
for sequence S and element a, construct sequences, including behaviors. The selectors on
behaviors are

preState(〈state0, act , state1〉) = state0

action(〈state0, act , state1〉) = act
postState(〈state0, act , state1〉) = state1

Aspects as Invariants 249

If x is a state variable and s a state, then s.x denotes the value of x in s. Further, in the
context of the action triple 〈state0, act, state1〉, x will refer to the value of x in the preState,
state0.x, and x′ refers to the value in the postState, state1.x.

Two higher-order operators will be useful:
image: Written f∗S, computes the image of f over a sequence S:

f∗nil = nil
f∗(S :: a) = (f∗S) :: f(a)

filter: Written p � S, computes the subsequence of S comprised of elements that satisfy p:
p � nil = nil
p � (S :: a) = if p(a) then (p � S) :: a else p � S

We specify actions in a pre- and postcondition style. For example, the specification
assume: x ≥ 0
achieve: x′ ∗ x′ = x ∧ x′ ≥ 0

is satisfied by the action x :=
√

x.
This paper presents its results in a generic imperative language framework, even though

most AOP approaches target object-oriented languages and even though some of the details
of static analysis and code generation are necessarily language-specific. The specifications
that we work with are sufficiently abstract that we believe it will not be difficult to generate
code in most current programming and modeling languages.

3 An Example

A simple example serves to introduce the technique: maintaining an error log for a system.
More precisely, whenever an exception handler is invoked, we require that an entry be made
in an error log.

The overall approach is to specify an invariant that gives a declarative semantical defin-
ition of our requirement, and then to generate aspectual code from it. First, what does the
error log mean as a data structure? Informally, the idea is that at any point in time t, the
error log records a list of all exceptions that have been raised by the program up to time t.
In order to formalize this we need some way to discuss the history of the program at any
point in time.
Maintaining a History Variable
The execution history of the program can be reified into the state by means of a virtual
variable (also called a shadow or ghost variable). That is, imagine that with each action
taken by the program there is a concurrent action to update a variable called hist that
records the history up until the current state.

s0
act0

hist := hist::〈s0,act0,s1〉
�� s1

act1

hist := hist::〈s1,act1,s2〉
�� s2

act2

hist := hist::〈s2,act2,s3〉
�� s3 · · ·

Obviously this would be an expensive variable, but it is only needed for specification pur-
poses, and usually only a residue of it will appear in the executable code.
Invariant
Given the history variable, action∗hist represents the sequence of actions so far in the
execution history. To express the invariant, we need a test for whether an action represents
an error; i.e. whether it represents the invocation of an exception handler. Let error?(act)
be true when act is an exception, so error? � action∗hist is the sequence of error actions so
far in the execution history.

We can now represent the semantics of the error log:
Invariant: errlog = error? � action∗hist

250 Douglas R. Smith

i.e., in any state, the value of the variable errlog is the sequence of error actions that have
occurred previously. The idea is that the programmer asserts this formula as a requirement
on the code. It is a crosscutting requirement since exceptions can be raised anywhere in the
code, regardless of its structure.
Establishing the Invariant
In order to correctly realize the invariant in the target code, we proceed by induction. The
first step is to generate code to establish the invariant initially, by satisfying the following
specification:

assume: hist = []
achieve: errlog = error? � action∗hist

The postcondition can be simplified as follows:
errlog = error? � action∗hist

≡ {using the definition of hist}
errlog = error? � action ∗[]

≡ {simplifying }
errlog = []

which is satisfied by the initialization code: errlog := [].
More generally, when the invariant contains reified variables, the following scheme spec-

ifies code for establishing the invariant I(x):
assume : hist = [] ∧ . . . initial values of other reified variables . . .

∧ . . . base code preconditions . . .
achieve : I(x)

In Section 4.3, we give an example that does not mention reified variables. It uses a slightly
different scheme for specifying the establishment of the invariant.
Specifying Disruptive Code and Deriving the Pointcut
To proceed with the inductive argument, we must maintain the invariant for all actions of
the target code. Since most actions of the target code have no effect on the invariant, it is
useful to focus on those actions that might disrupt the invariant. We will then generate code
for maintaining the invariant in parallel with the disruptive action.

The set of all code points that might disrupt the invariant corresponds to the AspectJ
concept of code points that satisfy a pointcut. The maintenance code that we generate for
each such disruptive code point corresponds to a point-specific instance of the advice of an
aspect. An exact characterization of the disruption points is given by

I(x) �= I(x′). (1)
That is, any action that satisfies (1) as a postcondition is a disruption point. More generally,
any action that satisfies a necessary condition on (1) is a potential disruption point. In our
example, we set up the following inference task:

assume : errlog = error? � action∗hist ∧ hist ′=hist :: 〈 , act , 〉 ∧ errlog ′ = errlog
simplify : (errlog = error? � action∗hist) �= (errlog ′ = error? � action∗hist ′)

In words, we assume that the invariant holds before an arbitrary action act , and that the
hist variable is updated in parallel with act . Moreover, we add in a frame axiom that asserts
that act does not change errlog since it is a fresh variable introduced by the invariant.
We calculate a pointcut specification as follows:

(errlog = error? � action∗hist) �= (errlog ′ = error? � action∗hist ′)
≡ { using the frame axiom and simplifying }

error? � action∗hist �= error? � action∗hist ′
≡ { using the definition of hist ′ }

error? � action∗hist �= error? � action∗(hist :: 〈 , act , 〉)
≡ { distributing action∗ over :: }

Aspects as Invariants 251

error? � action∗hist �= error? � ((action ∗hist) :: act)
≡ { distributing error? � over :: }

error? � action∗hist �= (if ¬error?(act) then error? � action∗hist
else (error? � action ∗hist) :: act

≡ { distributing the conditional outward }
if ¬error?(act) then error? � action∗hist �= error? � action∗hist
else error? � action∗hist �= (error? � action ∗hist) :: act

≡ { simplifying }
if ¬error?(act) then false else true

≡ { simplifying }
error?(act).

A static analyzer would scan the code (i.e., the abstract syntax representation of the code)
looking for all actions that satisfy this derived pointcut. More generally, the task to infer a
pointcut specification is given by an instance of the following scheme:

assume : I(x) ∧ hist ′ = hist :: 〈 , act , 〉
∧ ... updates of other reified variables ... ∧ ... relevant frame conditions ...

simplify : I(x) �= I(x′)
The simplified result will typically contain a mixture of terms, some of which can be evaluated
statically (i.e. on the abstract syntax of the source code) and some of which must be evaluated
dynamically (i.e. on the runtime data). Since we only need a necessary condition on (1), we
can weaken the derived pointcut specification by discarding those subformulas that can only
be evaluated dynamically. This weakening process means that the pointcut specification may
allow false positives, but, as will be seen in later examples, the generated maintenance code
incorporates the relevant semantics of the discarded dynamic tests.
Specification and Derivation of Maintenance Code
To complete the induction, we must find each potentially disruptive action (using the derived
pointcut specification) and then generate maintenance code to reestablish the invariant in
parallel with it. Suppose that act is an action such that error?(act). In order to preserve
the invariant, we need to perform a maintenance action that satisfies

assume : errlog = error? � action∗hist ∧ error?(act) ∧ hist ′ = hist :: 〈 , act , 〉
achieve : errlog ′ = error? � action∗hist ′

The postcondition can be simplified as follows:
errlog ′ = error? � action∗hist ′

≡ { using the definition of hist}
errlog ′ = error? � action ∗(hist :: 〈 , act , 〉)

≡ { distributing action∗ over :: }
errlog ′ = error? � ((action ∗hist) :: act)

≡ { distributing error? � over ::, using assumption that error?(act) }
errlog ′ = (error? � action∗hist) :: act

≡ { using the precondition/invariant inductively }
errlog ′ = errlog :: act

which is satisfied by the simple update errlog := errlog :: act . This maintenance ac-
tion may be performed in parallel with act . More generally, suppose that static analysis
has identified an action act as potentially disruptive of invariant I(x). If act satisfies the
specification

assume : P (x)
achieve : Q(x, x′)

then the maintenance code maint can be specified as
assume : P (x) ∧ I(x) ∧ hist ′=hist ::〈s0, act , s1〉 ∧ ... updates to other reified vars ...
achieve : Q(x, x′) ∧ I(x′)

252 Douglas R. Smith

In this schematic specification we compose the aspect with the base code by means of
a conjunction. Note that this specification preserves the effect of act while additionally
reestablishing the invariant I. If it is inconsistent to achieve both, then the specification is
unrealizable.

The generated code for maint may take the form of a parallel composition act ||update of
the actions act and update, or it may take a sequential form. Besides conceptual clarity, an
advantage to treating the maintenance action as parallel to the disruptive action is that the
invariant is always observed to hold in all states. Most work on programming with invariants
(e.g. [3, 14]), as well as AspectJ, sequentializes the maintenance action. If the maintenance
action is sequentialized, say for purposes of optimization, the generator needs to take care
that no external process that depends on the invariant could observe the state between
the two actions and notice that the invariant is (temporarily) violated. One technique for
assuring that no observation of the intermittent violation can be made is to lock the relevant
variables while the maintenance is being performed.

4 More Examples
4.1 Procedure Calls and Dynamic Context

This exercise treats procedure calls and the reification of dynamic procedure call context.
• Problem: Maintain a global that flags when a Sort procedure is executing.
• Reification: This problem requires that we reify and maintain the call stack, analogously
to the way that history is maintained in hist . To reify the call stack, it is necessary to elabo-

rate the model of behavior presented in Section 2. A call to procedure P , s0
x := P (x) �� s1 ,

can be elaborated to a subbehavior

s0
eval args �� s00

enter P

parms := argvals
�� s01

execute P �� s02
exit P

x := result
�� s1

With this elaboration, it is straightforward to maintain a call stack variable cs with operators
InitStack , push, and pop:

s0
eval args �� s00

enter P

cs := push(cs,〈P,argvals〉)
�� s01

execute P �� s02
exit P

cs := pop(cs)
�� s1

Procedural languages abstract away these details so a static analyzer must take this finer-
grain model into account when appropriate.
• Domain Theory: The boolean variable sorting? is to be true exactly when a call to Sort
is on the call stack cs. In the invariant, we use a predicate pcall?(act , f) that is true exactly
when action act is a procedure call to f .
• Invariant: sorting? = ∃(call)(call ∈ cs ∧ pcall?(call ,Sort))
Incrementally maintaining a boolean value is difficult, and a standard technique is to trans-
form a quantified expression into an equivalent set-theoretic form that is easier to main-
tain [15]:

sorting? = size({call | call ∈ cs ∧ pcall?(call ,Sort)}) > 0
and introduce a second invariant:

sortcnt = size({call | call ∈ cs ∧ pcall?(call ,Sort)})
By maintaining sortcnt , we can replace sorting? by sortcnt > 0 everywhere it occurs.
• Establishing the invariant: The code to establish the sortcnt invariant is specified as

assume : hist = [] ∧ cs = InitStack()
achieve : sortcnt = size({call | call ∈ cs ∧ pcall?(call ,Sort)})

The postcondition can be simplified as follows:
sortcnt = size({call | call ∈ cs ∧ pcall?(call ,Sort)})

≡ {using the assumption about cs}

Aspects as Invariants 253

sortcnt = size({call | call ∈ InitStack() ∧ pcall?(call ,Sort)})
≡ {simplifying }

sortcnt = 0

which is satisfied by the initialization code: sortcnt := 0.
• Disruptive Actions: The following task to infer a pointcut specification assumes a frame
axiom that characterizes the effect of an arbitrary base code action on the call stack variable
– it either effects a push, a pop, or has no effect.

assume: sortcnt = size({call | call ∈ cs ∧ pcall?(call ,Sort)})
∧ hist ′ = hist :: 〈 , act , 〉 ∧ (cs ′ = push(cs, 〈P, argvals〉)

∨ (cs ′ = pop(cs) ∧ top(cs) = 〈P, argvals〉)
∨ cs ′ = cs)

∧ sortcnt ′ = sortcnt
simplify: (sortcnt = size({call | call ∈ cs ∧ pcall?(call ,Sort)}))

�= (sortcnt ′ = size({call | call ∈ cs ′ ∧ pcall?(call ,Sort)}))
We calculate

(sortcnt = size({call | call ∈ cs ∧ pcall?(call ,Sort)}))
�= (sortcnt ′ = size({call | call ∈ cs ′ ∧ pcall?(call ,Sort)}))

≡ {using the frame axiom for sortcnt and simplifying}
size({call | call ∈ cs ∧ pcall?(call ,Sort)})
�= size({call | call ∈ cs ′ ∧ pcall?(call ,Sort)})

Using the disjunctive frame axiom on the call stack variable, we can proceed by cases:

≡ { Case 1: assume cs ′ = push(cs, 〈P, argvals〉) }
size({call | call ∈ cs ∧ pcall?(call ,Sort)})
�= size({call | call ∈ push(cs, 〈P, argvals〉) ∧ pcall?(call ,Sort)})

≡ { eliding the lhs and distributing call stack membership over push }
... �= size({call | (call ∈ cs ∨ call = 〈P, argvals〉) ∧ pcall?(call ,Sort)})

≡ { distributing }
... �= size({call | call ∈ cs ∧ pcall?(call ,Sort)})

+ size({call | call = 〈P, argvals〉 ∧ pcall?(call ,Sort)})
≡ { simplifying }

... �= size({call | call ∈ cs ∧ pcall?(call ,Sort)})
+ if pcall?(〈P, argvals〉,Sort) then 1 else 0

≡ { distributing the conditional outwards }
if pcall?(〈P, argvals〉,Sort) then true else false

≡ { simplifying }
pcall?(〈P, argvals〉,Sort).

The derived pointcut specification in this case is
cs ′ = push(cs, 〈P, argvals〉) ∧ pcall?(〈P, argvals〉,Sort).

Continuing with the case analysis, we calculate
≡ { Case 2: assume (cs ′ = pop(cs) ∧ top(cs) = 〈P, argvals〉)

which implies (cs = push(cs ′, 〈P, argvals〉) }
size({call | call ∈ push(cs ′, 〈P, argvals〉) ∧ pcall?(call ,Sort)})
�= size({call | call ∈ cs ′ ∧ pcall?(call ,Sort)})

≡ { using similar reasoning to previous case}
pcall?(〈P, argvals〉,Sort).

The derived semantic pointcut in this case is
cs ′ = pop(cs) ∧ top(cs) = 〈P, argvals〉 ∧ pcall?(〈P, argvals〉,Sort).

And the final step in the case analysis is

254 Douglas R. Smith

≡ { Case 3: assume cs ′ = cs }
size({call | call ∈ cs ∧ pcall?(call ,Sort)})
�= size({call | call ∈ cs ′ ∧ pcall?(call ,Sort)})

≡ { using the assumption, and simplifying}
false

Combining the case assumptions with their derived pointcut specifications, we obtain
cs ′ = push(cs, 〈P, argvals〉) ∧ pcall?(〈P, argvals〉,Sort)

∨ cs ′ = pop(cs) ∧ top(cs) = 〈P, argvals〉 ∧ pcall?(〈P, argvals〉,Sort)
∨ cs ′ = cs ∧ false

or simply
cs ′ = push(cs, 〈P, argvals〉) ∧ pcall?(〈P, argvals〉,Sort)

∨ cs ′ = pop(cs) ∧ top(cs) = 〈P, argvals〉 ∧ pcall?(〈P, argvals〉,Sort).
which specifies entrances and exits of calls to Sort respectively.
• Specification and derivation of maintenance code: The pointcut specification
gives rise to two cases: push and pop operations. For a push operation of the form

cs := push(cs, 〈Sort , 〉)
the maintenance specification is

assume : sortcnt = size({call | call ∈ cs ∧ pcall?(call ,Sort)})
achieve : cs ′ = push(cs, 〈Sort , argvals〉)

∧ sortcnt ′ = size({call | call ∈ cs ′ ∧ pcall?(call ,Sort)})
which an easy calculation shows to be satisfied by the concurrent assignment

cs := push(cs, 〈Sort , argvals〉) || sortcnt := sortcnt + 1
on entrance to procedure Sort . For a pop operation of the form cs := pop(cs) where
top(cs) = 〈Sort , 〉, the maintenance specification is

assume : cs �= initStack() ∧ top(cs) = 〈Sort , 〉
∧ sortcnt = size({call | call ∈ cs ∧ pcall?(call ,Sort)})

achieve : cs ′ = pop(cs) ∧ sortcnt ′ = size({call | call ∈ cs ′ ∧ pcall?(call ,Sort)})
which is satisfied by the concurrent assignment

cs := pop(cs) || sortcnt := sortcnt − 1
The concurrent formulation of the maintenance code can be implemented by sequentializing
the sortcnt updates into the body of the procedure, just after entry and just before return.

4.2 Counting Swaps in a Sort Routine

This problem builds on the previous problem and illustrates the execution of advice within
dynamic contexts, a key feature of AspectJ.
• Problem: Count the number of calls to a swap procedure that are invoked during the
execution of a sort procedure Sort .
• Domain Theory: As in the previous problem, let cs be the reified call stack, with oper-
ators InitStack , push, and pop.
• Invariant: The invariant uses a sequence comprehension notation, so that swpcnt is the
length of a sequence of actions satisfying various properties. Also, recall that the notation
s0.cs refers to the value of variable cs in state s0.

swpcnt = length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)
∧ ∃(pc)(pc ∈ st0.cs ∧ pcall?(pc,Sort))])

or, more simply, using the invariant from the previous example

swpcnt = length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

Aspects as Invariants 255

• Establishing the invariant: The code to establish the sortcnt invariant is specified as
assume : hist = [] ∧ cs = initStack()
achieve : swpcnt = length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)

∧ st0.sortcnt > 0]).
The postcondition can be simplified as follows:

swpcnt = length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ . . .])
≡ { using the assumption about hist }

swpcnt = length([act0 | 〈st0, act0, st1〉 ∈ [] ∧ . . .])
≡ { simplifying }

swpcnt = 0
which is satisfied by the initialization code swpcnt := 0.
• Disruptive Actions: The inference task to infer a pointcut is specified as follows

assume : swpcnt = length([act | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0])

∧ hist ′ = hist :: 〈s0, act , s1〉 ∧ swpcnt ′ = swpcnt
simplify : (swpcnt = length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)

∧ st0.sortcnt > 0]))
�= (swpcnt ′ = length([act0 | 〈st0, act0, st1〉 ∈ hist ′ ∧ pcall?(act0, swap)

∧ st0.sortcnt > 0]))
We calculate a pointcut specification as follows:

(swpcnt = length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0]))

�= (swpcnt ′ = length([act0 | 〈st0, act0, st1〉 ∈ hist ′ ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0]))

≡ { using the frame axiom, and simplifying }
length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

�= length([act0 | 〈st0, act0, st1〉 ∈ hist ′ ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])
≡ { eliding the left-hand side and using the assumption about hist’ }

. . . �= length([act0 | 〈st0, act0, st1〉 ∈ hist :: 〈s0, act , s1〉 ∧ pcall?(act0, swap)
∧ st0.sortcnt > 0])

≡ { distributing }
. . . �= length([act0 | (〈st0, act0, st1〉 ∈ hist ∨ 〈st0, act0, st1〉 = 〈s0, act , s1〉)

∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])
≡ { distributing the disjunction outwards }

. . . �= length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])
+length([act0 | 〈st0, act0, st1〉=〈s0, act , s1〉 ∧ pcall?(act0, swap) ∧ st0.sortcnt >0])

≡ { distributing the equality in the second addend }
. . . �= length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

+ length([act | pcall?(act , swap) ∧ s0.sortcnt > 0])
≡ { simplifying }

. . . �= length([act0 | 〈st0, act0, st1〉 ∈ hist ∧ pcall?(act0, swap) ∧ st0.sortcnt >0])
+ if pcall?(act , swap) ∧ s0.sortcnt > 0 then 1 else 0

≡ { distributing the conditional outwards and simplifying }
if pcall?(act , swap) ∧ s0.sortcnt > 0 then true else false

≡ { simplifying }
pcall?(act , swap) ∧ s0.sortcnt > 0.

The derived pointcut specification is pcall?(act , swap) ∧ sortcnt > 0.
Note that the second conjunct is not statically determinable in general, so we weaken

the pointcut to pcall?(act , swap) (recall that we only need a necessary condition on the
disruption of the invariant). When we derive the maintenance code below, the extra condition
sortcnt > 0 will show up as a runtime test.

256 Douglas R. Smith

• Specification and derivation of maintenance code: Any call to swap is a poten-
tially disruptive action. The following specification jointly achieves the effect of act and
maintains the invariant:

assume: precondition(act) ∧ swpcnt = length([act0 | 〈st0, act0, st1〉 ∈ hist
∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

∧ hist ′ = hist :: 〈s0, act , s1〉 ∧ pcall?(act , swap)
achieve: postcondition(act) ∧ swpcnt ′ = length([act0 | 〈st0, act0, st1〉 ∈ hist ′

∧ pcall?(act0, swap) ∧ s0.sortcnt > 0])
The second conjunct of the postcondition can be simplified as follows:

swpcnt ′ = length([act0 | 〈st0, act0, st1〉 ∈ hist ′

∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])
≡ { using the assumption about hist’ }

swpcnt ′ = length([act0 | 〈st0, act0, st1〉 ∈ hist :: 〈s0, act , s1〉
∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ { distributing ∈ over :: }
swpcnt ′ = length([act0 | pcall?(act0, swap) ∧ st0.sortcnt > 0

∧ (〈st0, act0, st1〉 ∈ hist ∨ 〈st0, act0, st1〉 = 〈s0, act , s1〉)])
≡ { driving ∨ outward through ∧, sequence-former, and length }

swpcnt ′ = length([act0 | 〈st0, act0, st1〉 ∈ hist
∧ pcall?(act0, swap) ∧ ts0.sortcnt > 0])

+ length([act0 | 〈st0, act0, st1〉 = 〈s0, act , s1〉
∧ pcall?(act0, swap) ∧ st0.sortcnt > 0])

≡ { using assumption about swpcnt , and distributing equality in sequence-former }
swpcnt ′ = swpcnt + length([act | pcall?(act , swap) ∧ s0.sortcnt > 0])

≡ { using assumption about act , and simplifying}
swpcnt ′ = swpcnt + length([act | s0.sortcnt > 0])

≡ { using independence of act from the sequence-former predicate }
swpcnt ′ = swpcnt + (if s0.sortcnt > 0 then length([act | true])

else length([act | false])
≡ { simplifying }

swpcnt ′ = swpcnt + (if st0.sortcnt > 0 then 1 else 0)
≡ { pulling the conditional outward and simplifying }

if st0.sortcnt > 0 then swpcnt ′ = swpcnt + 1 else swpcnt ′ = swpcnt .
Consequently, the maintenance specification is satisfied by the parallel statement

act || if sortcnt > 0 then swpcnt := swpcnt + 1.

Note that a residue of the invariant appears in the maintenance code. The test sortcnt > 0
could not be decided statically, so it falls through as a runtime test.

4.3 Maintaining the Length of a List

This example does not require the reification of an extra-computational entity. It is presented
as an example of our technique that cannot currently be treated in AspectJ because it is
handled at the assignment level, rather than at the method-call level.
• Problem: Maintain the length of a list �.
• Domain Theory: The list data type includes constructors (nil , append , concat), selectors
(first, rest), deleteElt, as well as a length function and other operators.
• Invariant: llength = length(�)
• Disruptive Actions: The derivation of the pointcut specification results in � �= �′; i.e.,
any action that changes � may disrupt the invariant. Static analysis looks for any action
that changes �, such as assignments to �.

Aspects as Invariants 257

• Establishing the invariant: The invariants that were treated in previous examples
all referred to reified variables, and consequently, the code to establish them belonged to
the outermost program initialization phase. This example refers only to program variables
(� in particular), so its initialization code belongs to the scope of those variables. For this
example, with one dependent variable, it is easy for static analysis to locate its initialization
action, say linit. Then the code to establishment of the invariant initially is specified as

assume: true
achieve: llength = length(�) ∧ linit

That is, we wish to establish the invariant concurrently with the initialization of its depen-
dent variable. To be concrete, if the static analyzer finds the initialization code � := nil
then the appropriate instance of the above scheme results in the concurrent code

� := nil || llength := 0
which establishes the invariant.
• Specification and Derivation of Maintenance Code: For each potentially disrup-
tive action act , we generate a specification for an action that jointly achieves the effect of act
and maintains the invariant. For example, suppose that the pointcut specification matches
an assignment � := � :: elt , an action act that appends an element onto � results in the
maintenance specification

assume: llength = length(�)
achieve: �′ = � :: elt ∧ llength ′ = length(�′)

from which one can easily calculate the satisfying concurrent assignment
� := � :: elt || llength := llength + 1

For other actions that change �, we create the corresponding maintenance code specifications,
and then generate code. Note that each change to � can result in code that is completely
different from other maintenance actions for �.

4.4 Model-View Consistency Maintenance

The classic model-view problem is to maintain consistency between a data model and various
graphical views when the program and/or user can change any of them. That is, whenever
the program changes the data model, the graphical views should be updated to maintain
consistency, and conversely, if the user changes one graphical view interactively, then the
data model and the other views must be updated to reflect the change.

Note that this example has no newly introduced variables as in previous examples. The
nature of the problem is to enforce a new constraint on existing variables.
• Problem: Maintain consistency between a data model md :Model and a graphical view
vw :View. Generalizing the example to multiple models with multiple views is discussed at
the end of this section.
• Domain Theory: Assume that the data content of md :Model is given by an attribute
mValue : Model → Value for some type Value, and, similarly, the data content of a view is
given by vValue : View → Value for View . Although equality is used between these values
to express consistency, in practical situations, a more complex predicate is needed.
• Invariant: vw .vValue = md .mValue
• Disruptive Actions: We assume that the only changes that can be made to a model are
via a call to its update method; similarly for views. Formally, the third assumption below is
a frame axiom asserting that a system action either (i) leaves a model unchanged, or (ii) is
a call to the model update method. The fourth assumption states the analogous constraint
on views. The task to infer a pointcut is specified as follows:

assume: s0.vw .vValue = s0.md .mValue ∧ hist ′ = hist :: 〈s0, act , s1〉
∧ (s0.md = s1.md ∨ pcall?(act ,md .update))
∧ (s0.vw = s1.vw ∨ pcall?(act , vw .update))

simplify: (s0.vw .vValue = s0.md .mValue) �= (s1.vw .vValue = s1.md .mValue)

258 Douglas R. Smith

We calculate a pointcut specification as follows:
(s0.vw .vValue = s0.md .mValue) �= (s1.vw .vValue = s1.md .mValue)

≡ { using the assumption that the lhs holds and simplifying}
s1.vw .vValue �= s1.md .mValue.

Using the disjunctive frame axiom on models, we can proceed by cases:
≡ { Case 1: assume s0.md = s1.md }

s1.vw .vValue �= s0.md .mValue
≡ { using the assumption that the invariant holds }

s1.vw .vValue �= s0.vw.mV alue.
Now, using the disjunctive frame axioms on views, we proceed by cases:
≡ { Case 1.1: assume s0.vw = s1.vw }

false.

≡ { Case 1.2: assume pcall?(act , vw .update) }
s1.vw .vValue �= s0.vw.mV alue.

Finally, popping up a level and proceeding with the case analysis:
≡ { Case 2: assume pcall?(act ,md .update) }

s1.vw .vValue �= s1.md .mValue.

Combining the case assumptions with their derived pointcut specifications, we obtain
s1.vw .vValue �= s1.md .mValue ∧ pcall?(act ,md .update)

∨ s1.vw .vValue �= s0.vw.mV alue ∧ pcall?(act , vw .update)
which specifies calls to update either the model or the view.
• Specification and derivation of maintenance code: If action act has the form
md .update(newval), then we generate following the maintenance specification

assume: s0.vw .vValue = s0.md .mValue
achieve: s1.vw .vValue = s1.md .mValue ∧ s1.md .mValue = newval

which is satisfied by the concurrent command md .update(newval) || vw .update(newval).
The same code is derived when action act has the form vw .update(newval). In general,

one would like to maintain consistency between a dynamic collection of data models and their
corresponding views. To specify this would require quantifying over all currently allocated
models and views, which in turn requires reifying the heap. It also requires taking into
account the methods for creating, destroying, and associating models and views.

5 Remarks
This work may develop in a number of directions, some of which are discussed below.
1. Implementation — We anticipate implementing the techniques of this paper in our be-
havioral extension [16] of the Specware system [8]. The inference tasks in the examples
are comparable in difficulty to those that were performed routinely and automatically in
KIDS [19]. However, automated deduction requires the presence of an adequate inference-
oriented theory of the language, data types, and application domain. As can be seen from
the examples, most of the theorems needed are in the form of distributivity laws.

In general, the problem of synthesizing code from pre/postconditions is not decidable.
However, two factors help to achieve tractability. First, note that the synthesis problem
here is highly structured and incremental in nature. The goal is to reestablish an invariant
that has just been perturbed by a given action. Second, synthesis can be made tractable
by suitable restrictions on the language/logic employed. For example, in Paige’s RAPT
system [15], invariants and disruptive actions were restricted to finite-set-theoretic operations
from the SETL language, and the corresponding maintenance code could be generated by
table lookup.

Aspects as Invariants 259

2. Granularity of Maintenance Code — It may be convenient to treat a code block or a
procedure/method as a single action for purposes of invariant maintenance. The main issue
is that no (external) process that depends on the invariant could observe a state in which
the invariant is violated. This notion suggests that static analysis could be used to check
both (i) potential disruption points of the invariant, and (ii) the largest enclosing scope of
dependent variables that is unobservable externally. An advantage of using a larger grain
for maintenance is the performance advantage of bundling many changes at once, rather
than eagerly updating at every dependent-variable-change. This is particularly advantageous
when the update is relatively expensive.
3. Constraint Maintenance: Maximization versus Invariance — Sometimes a crosscutting
feature may not have the form of an invariant for practical reasons. Consider, for example, the
quality of service offered by a wireless communications substrate. Ideally, full capacity service
is provided invariantly. However, physical devices are inherently more or less unreliable.
There are at least two characterizations of constraint maintenance that make sense in this
situation:
(i) Maximize the uptime of the service — That is, maximize the amount of time that a

prescribed level of service is provided. Design-time maintenance might involve composing
a fault-adaptive scheme to improve uptime.

(ii) Maximize the provided bandwidth — That is, continually make adjustments that provide
maximal bandwidth given the circumstances.

4. Enforcing Behavioral Policies — This paper focuses on crosscutting concerns that can be
specified as invariants. Behavioral invariants can be equivalently expressed as single-node
automata with an axiom at the node. It is natural to consider crosscutting concerns that
are specified by more complex automata and their corresponding temporal logic formulas.
As mentioned earlier, some security policies disallow certain behavior patterns, as opposed
to individual runtime events (see for example [6]). It is natural to consider generalizing the
techniques of this paper to classes of policy automata. In recent work we developed a behav-
ioral notion of pointcut, using automata to specify behavioral context for the application
of advice [21]. Independently, several other research groups have been developing similar
concepts [1, 4, 23,24].
5. Maintaining Interacting Constraints — Many application areas, including active data-
bases with consistency constraints and combinatorial optimization problems with constraint
propagation, have the characteristic that a single change (x := e) can stimulate extensive
iteration until quiescence (a fixpoint) is reached. In terms of this paper, several invariants
may have overlapping dependent variables and consequently their maintenance can interfere
with each other’s truth. That is, a change to maintain one constraint may cause the violation
of another.

A sufficient condition that maintaining such a set of constraints leads to a fixpoint
may be found in [17]. Constraints over a finite semilattice that are definite (a generalized
Horn-clause form x) A(x) where x is a variable over the semilattice and A is monotone)
can be solved in linear time. Using essentially the same theory, in [20, 26] we describe the
process of automatically generating a customized constraint solver for definite constraints.
The resulting solving process is an iterative refinement of variable values in the semilattice.

This context leads to a generalization of the formalism of this paper when (1) changes
to certain variables can be treated as decreasing in a semilattice, and (2) constraints are
definite. Then, a disruptive action (x := e) has postcondition (x′) e) rather than the
stronger (x′ = e), and all constraint maintenance is downward in the semilattice, until a
fixpoint is reached.

In a similar spirit, JMangler [10] implements a capability to iterate class transformations
at class load-time when they have mutual dependencies. Under conditions on the transfor-
mations that satisfy the conditions above, the iteration converges to a fixpoint and the result
guarantees that all transformations are fully applied.

260 Douglas R. Smith

6. Comparison with AspectJ — We conjecture that many aspects in AspectJ can be expressed
as invariants, and that their effect can be achieved by means of the general process of
this paper. However, the use of the around advice in AspectJ allows the replacement of a
method call by arbitrary code, changing its semantics (e.g., consider the aspect that replaces
every call to method m by advice that throws an exception). Our approach is restricted to
maintenance that refines existing actions, so it is not complete with respect to AspectJ. On
the other hand several of the examples in this paper cannot be carried out in AspectJ, so
the two are expressively incomparable.

In the long run, it may be that only semantics-preserving aspects will be embraced in
practice. If aspects are allowed to modify the behavior of code, then locality of program
semantics is destroyed. This undercuts the potential for improved understandability of code
due to the increased modularity that is the hallmark of aspects.

6 Recapitulation and Comparison with Related Work

We now summarize how the invariant maintenance approach treats the issues raised in the
Introduction.
1. What is the intention of an aspect? — The intention of an aspect is expressed by an
invariant property of state. The invariant can be thought of as a formal specification of an
aspect.
2. Is the pointcut complete? — Does a pointcut express exactly the set of the intended run-
time events? The invariant maintenance approach characterizes the joinpoints semantically,
as those actions that could possibly disrupt the invariant. It thus does not require adherence
to naming conventions. The pointcut is derived as a necessary condition on the violation of
the invariant by a system action. Static analysis is then guaranteed to identify a superset of
code locations that, at runtime, give rise to a violation of the invariant.

The derived pointcut is a specification of an AspectJ-style pointcut. To show the im-
plementation relation between them, one would need to link the method calls and other
joinpoints of the AspectJ pointcut to their semantic description (via pre/postconditions) to
show that they satisfy the derived pointcut specification.
3. Is the advice correct? — Does an aspect correctly implement its intention? For each po-
tentially disruptive action, our approach generates an action-specific specification, which, if
realized by synthesis, maintains the invariant while still accomplishing the action. The over-
all argument that the invariant is enforced in the target system is essentially by induction.
We establish the invariant initially, and then use static analysis to ensure that the invariant
is maintained inductively. The invariant maintenance approach achieves correctness by con-
struction. Other approaches to correctness of aspects and to woven code include verification
through model checking [13], and runtime checking of contracts [12].
The invariant maintenance approach also provides novel contributions to the following issues:
1. Context-Specialized Advice — The advice of an AspectJ aspect may need to embody many
case distinctions that cater for the various contexts that arise at the joinpoints, giving rise
to inefficiency and complexity. It would be desirable if the aspect weaver could tailor the
advice body to the specific context in which it will execute.

In AspectJ, and most extensions of it, the advice body is a code template that is instan-
tiated with expressions from the context of a pointcut, and is parametric on runtime values.
One can increase the range of context and parametricity, but the advice is still a code tem-
plate. There have been a variety of extensions to AspectJ that aim to increase the range of
context that can be captured at joinpoints. For example, LogicAJ [18] and Sally [7] use logi-
cal metavariables to supplement the pattern constructs of AspectJ. Both also allow patterns
in pointcut and advice definitions where AspectJ only allows constants (e.g., metavariables
that match types). This mechanism supports the binding of more pieces of context (e.g.,

Aspects as Invariants 261

types) than AspectJ allows and thus advice bodies can be more context-sensitive. The use
of metavariables also adds consistency constraints in the matching process.

The invariant maintenance approach is fully context-sensitive in the sense that main-
tenance code/advice is unique to each code location satisfying the pointcut specification.
It can be completely different in different contexts, not just different instances of a fixed
template. The list example in Section 4.4 illustrates this. To obtain the same effect in As-
pectJ or LogicAJ would require either (1) a single disjunction pointcut together with a big
context switch in the advice, or (2) multiple aspects, one for each context together with the
appropriate advice template for that context. The invariant approach neatly specifies what
to do in an unbounded number of contexts. Of course it only specifies what to do in each
context — the prescription of what to do must be achieved by synthesis. The difference is
generation of arbitrary code per disruptive action versus multiple instances of a single advice
template.

The use of reification is a potentially unbounded technique for bringing context into play.
In this paper we have mentioned reification of history, the call stack, and the heap. There are
many other possibilities. For example, reifying instruction timing information would allow
one to maintain real-time properties of the base code.
2. Aspect Interference — Aspects may interfere with one another — since the order in which
they are applied makes a semantic difference, the burden is on the AspectJ programmer
to order them and resolve interferences. Interference is a fundamental problem of aspect
composition.

The invariant maintenance approach brings two extra degrees of freedom in treating in-
terference relative to programmatic aspects: semantic abstraction and inherent concurrency.
Since the maintenance specification is expressed in terms of pre/postconditions and the
invariants to be maintained, the synthesizer has maximal freedom to design a mutually sat-
isfactory behavior. The resulting generated code does not need to be the same as the default
implementation of the aspects individually. Also, the maintenance code and the system code
are conceptually concurrent. To render them into conventional programming languages, it is
necessary to sequentialize them, which introduces the possibility for interference. Thus the
interference detection/resolution tools that have been explored for dependency analysis and
instruction ordering are needed.

On the other hand, in some situations the system code and the aspects simply conflict.
In the invariant maintenance approach this is signaled by the inability to synthesize main-
tenance code at a pointcut location. Depending on the techniques used, a failed synthesis
process may be able to return a counterexample that can be used by the developers to
pinpoint the semantic discrepancy between their invariants and the system code.

Several projects have developed analysis tools for detecting aspect interference and in-
ferring safe orderings; e.g., LogicAJ [18]. Reflex [22] provides programmatic mechanisms for
detecting potential interference and prescribing how they should compose.
3. Evolution — Evolution of the base program may require extending the AspectJ pointcut
and advice description to reference any new class members (which requires an understanding
of the modified set of runtime events being targeted, and what code to execute in each
specific context of occurrence). In our approach, if the invariant remains unchanged, then
the derived pointcut specification doesn’t change. Consequently, if the base code changes,
then the static analyzer can simply run the pointcut specification over the new base code.
Ideally, this can be done incrementally if the structure of the changes have been recorded.
In other words, an invariant will tend to be more stable under base code changes than an
aspect that implements it.
The generative techniques in this paper derive from transformational work on incremental
computation, especially Paige’s Finite Differencing transformation [14, 15]. Finite Differ-
encing, as implemented in the RAPTS system, automatically maintains invariants of the
form c = f(x) where c is a fresh variable, x is a vector of program variables, and f is a

262 Douglas R. Smith

composite of set-theoretic programming language operations. Maintenance code is generated
by table lookup. In the KIDS system [19], we extended Finite Differencing by (1) allowing
the maintenance of both language- and user-defined terms, and (2) using automatic simpli-
fiers to calculate maintenance code at design-time. The functional language setting in KIDS
naturally reveals the concurrency of disruptive code and maintenance updates.

As in Finite Differencing, other approaches to programming with invariants (e.g. [3])
work exclusively with program variables. This paper introduces the notion of reifying extra-
computational information, enabling the expression of system-level crosscutting features as
invariants.

A common use for AspectJ is to enforce preconditions, postconditions, and invariants
(e.g. [11]). The intention is to insert code that dynamically checks those conditions and flags
violations. In contrast, this paper focuses on adding code to enforce invariants when they
would otherwise be violated. The resulting code is guaranteed to satisfy the invariant even
though the base code may not.

7 Concluding Remarks

Aspect-Oriented Software Development aims to support a more modular approach to pro-
gramming, with a special focus on crosscutting concerns. This paper explores techniques for
specifying crosscutting concerns as invariants, and generating the code necessary to maintain
them. The reification of extra-computational entities helps in expressing many crosscutting
concerns.

Our invariants provide an abstract yet precise, semantic characterization of crosscutting
concerns. The abstraction should aid in clarifying the intention of a concern and promote
stability under evolution. The precise semantics means that the generation of maintenance
code can be performed mechanically, with assurance that the result meets intentions.

The generally accepted semantics of AspectJ is based on call-stack reification [25], sug-
gesting that AspectJ crosscutting concerns can be characterized as actions to take about
method calls in a specified dynamic context. Our approach lifts to a more general perspective:
what kinds of crosscutting concerns can be addressed when arbitrary extra-computational
information is reified.

This work advocates a design process that focuses on generating a normal-case base
program from high-level models or specifications, followed by the generation and insertion
of extensions to implement various crosscutting concerns. Code structure simplifies to a
clean natural decomposition of the basic business logic together with system-level invariants
that specify crosscutting concerns. The improved modularity should help to lower the cost
of development and evolution and provide increased assurance.

Acknowledgments

Thanks to Cordell Green, Gregor Kiczales, Peter Pepper, and Kevin Sullivan for discussions
of this work. Thanks also to Lambert Meertens, Stephen Westfold, and the reviewers for
useful comments on the text. This work was partially supported by the US Department of
Defense and by the Office of Naval Research under Grant N00014-04-1-0727.

References
1. C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble: Adding trace matching with
free variables to AspectJ. In: Proceedings of OOPSLA, 345–3640, 2005.

2. Aspect-Oriented Software Development website 2003, http://www.aosd.net/
3. X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno: Invariant-based specification, synthesis

and verification of synchronization in concurrent programs. In: Proceedings of the 24th
International Conference on Software Engineering, May 2002.

Aspects as Invariants 263

4. R. Douence, P. Fradet, and M. Suedholt: Composition, reuse and interaction analysis
of stateful aspects. In: Aspect-Oriented Software Development (AOSD04), ACM Press,
141–150, 2004.

5. T. Elrad, R. Filman, and A. Bader (Eds.): Special Issue on Aspect-Oriented Program-
ming. Vol. 44(10). Communications of the ACM, 2001.

6. U. Erlingsson and F. Schneider: SASI enforcement of security policies: A retrospective.
In: Proceedings of the New Security Paradigms Workshop, Ontario, Canada, 1999.

7. S. Hanenberg and R. Unland: Parametric introductions. In: Aspect-Oriented Software
Development, 2003.

8. Kestrel Institute, Specware System and documentation, 2003. Available at:
http://www.specware.org/.

9. G. Kiczales et al.: An Overview of AspectJ. In: Proc. ECOOP, LNCS 2072, Springer,
327–353, 2001.

10. G. Kniesel, P. Costanza, and M. Austermann: JMangler – a powerful back-end for
aspect-oriented programming. In R. Filman, T. Elrad, S. Clarke, and M. Aksit, (Eds.):
Aspect-Oriented Software Development, Prentice-Hall, 2004.

11. R. Laddad: AspectJ in Action. Manning Publishing Co., 2003.
12. D. H. Lorenz and T. Skotiniotis: Extending design by contract for aspect-oriented

programming. Smithsonian/NASA Astrophysics Data System. cs/0501070, 2005.
http://adsabs.harvard.edu/abs/2005cs.

13. H. Li, S. Krishnamurthi, and K. Fischer: Modular verification of open features through
three-valued model checking. Automated Software Engineering Journal 12, 349–382,
2005.

14. R. Paige: Programming with invariants. IEEE Software 3:11, 56–69, 1986.
15. R. Paige and S. Koenig: Finite differencing of computable expressions. ACM Transac-

tions on Programming Languages and Systems 4:3, 402–454, 1982.
16. D. Pavlovic and D. R. Smith: Evolving specifications. Technical Report, Kestrel Insti-

tute, Palo Alto, CA, USA, 2004.
17. J. Rehof and T. Mogenson: Tractable constraints in finite semilattices. Science of

Computer Programming 35, 191–221, 1999.
18. T. Rho and G. Kniesel: Uniform genericity for aspect languages. Technical Report

IAI-TR-2004-4, Computer Science Department III, University of Bonn, Germany, 2004.
19. D. R. Smith: KIDS – a semi-automatic program development system. IEEE Transactions

on Software Engineering, Special Issue on Formal Methods in Software Engineering 16,
1024–1043, 1990.

20. D. R. Smith, E. A. Parra, and S. J. Westfold: Synthesis of planning and scheduling
software. In Tate, A. (Ed.): Advanced Planning Technology, AAAI Press, Menlo Park,
226–234, 1996.

21. D. R. Smith and K. Havelund: Automatic enforcement of error-handling policies. Tech-
nical report, Kestrel Technology, 2004. http://www.kestreltechnology.com/.

22. É. Tanter and J. Noyé: A versatile kernel for multi-language AOP. In: Proceedings of the
4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component
Engineering (GPCE 2005). LNCS 3676, Tallin, Estonia, Springer, 173–188, 2005.

23. W. Vanderperren, D. Suvee, M. Cibran, and B. de Fraine: Stateful aspects in JAsCo.
In: Proceedings of Software Composition 2005, Springer LNCS 3628, 167–181, 2005.

24. R. Walker and K. Viggers: Implementing protocols via declarative event patterns. In:
SIGSOFT Foundations of Software Engineering (FSE04), ACM Press, 159–169, 2004.

25. M. Wand, G. Kiczales, and C. Dutchyn: A semantics for advice and dynamic join points
in aspect-oriented programming. ACM Transactions on Programming Languages and
Systems 26(5), 890–910, 2003.

26. S. Westfold and D. Smith: Synthesis of efficient constraint satisfaction programs. Knowl-
edge Engineering Review 16, 69–84, Special Issue on AI and OR, 2001.

Program Transformations:
Some Lessons from the 1980s

David S. Wile

Teknowledge Corp.,
4640 Admiralty Way #1010, Marina del Rey, CA 90292 USA
dwile@teknowledge.com

Summary. The 1980s were a fertile time in the development of program transformation systems.
Much of the experience we gained during those years, what we learned about designing, implement-
ing, and using transformation systems, is written down in obscure places that today’s researchers
probably do not have access to, or probably will not find if they do. Moreover, many practical tidbits
of information were understood, but never written down. I do not really think the community is
aware of some of the problems they are revisiting today and solutions they are reinventing (some
that do not work!). Bob Paige was a major contributor to the body of transformation research; he
was also very concerned that his many results not be lost to successive generations of researchers.
Late in his life he produced a compendium of his results and he encouraged his colleagues to do
likewise. This is my effort towards that goal.

Keywords: metaprogramming, automatic program development, program transformation.

1 Introduction
In 1987 at a transformation workshop in Bad Tölz, (then West) Germany [29], Martin
Feather presented a survey of transformation system issues to that time [17]. He claimed
that [17, page 165]:

The common thread of all transformation research is the formal develop-
ment from specification to implementation. Because it is formal it offers
the potential for introducing extensive mechanized support into much
of the programming process. Because it is a development it records the
complete path from the descriptive nature of the specification (which
outlines what is to be achieved), to the prescriptive nature of the pro-
gram (which details how things are actually done).

He broke the approaches down into: (i) extended compilation — wholly automatic methods
in which the compiler is given advice, (ii) metaprogramming — automated methods with
varying degrees of interaction, and (iii) synthesis — automated methods that understand
the algorithmic knowledge they are manipulating. (I would have added a 4th category:
foundational — theories underlying transformation methods and processes.) Although I
cannot claim to cover all three of these in any depth, I would characterize our research
group’s approach as an evolution from synthesis concerns, to metaprogramming concerns,
to extended compilation, over the years. Below I indicate some of our successes, along with
the mistakes we made, to draw lessons from the experiences that others may use today.

2 Historical Perspective
To set the stage allow me to indulge in a brief, rather egocentric, historical perspective. First,
our entry into the field was from a fairly unusual direction: we — Bob Balzer, Neil Goldman

O. Danvy et al. (eds.), Automatic Program Development – A Tribute to Robert Paige, 264–272.
c© 2008 Springer.

Program Transformations: Some Lessons from the 1980s 265

and myself, initially, led by Bob Balzer at the University of Southern California’s Information
Sciences Institute — were interested in automatic programming, by its very nature a synthesis
activity, of programs from natural language descriptions! We discovered that an important
“key” to its success was to translate natural language into a formal specification language
that was as close to the models natural language support as possible [3].
Gist
These natural language metaphors included “free” reference to information, any implemen-
tation of which may require checkpointing — e.g. “the protection of the file before it was
last edited” — or derivation — e.g. “the total number of bytes occupied by any version
of this file”. In addition, references to nouns correspond to types, attributes correspond to
relationships accessed in a variety of ways, and functions correspond to processes. In partic-
ular, quantification over predicates is easily expressed — e.g. “every message that has been
marked for action and not distributed”. Moreover, one could specify triggered activities that
were to be evaluated whenever a condition arose — e.g. “whenever two differently named files
contain the same information (talk about free reference to information!), warn the user”. The
most distinguishing aspect of our language, called Gist, was that one could state constraints
globally and specify behavior nondeterministically, guaranteed that the behaviors that violate
constraints were not part of the intended specified behavior. This was very high level indeed,
yet formalizable.

But the very high-level nature of the language guaranteed that some sort of compilation
activity was going to be required to translate into efficient implementations. We had heard
of John Darlington and Rod Burstall’s pioneering efforts in program transformations [10] —
originally only fold/unfold were identified, while what our group considered to be transfor-
mations were to them just equational reasoning (or something like that). This seemed to be
the key to developing the implementation from our high-level specifications, so we worked
out an example related to our automatic programming research and submitted a paper to
the Software Engineering Conference in San Francisco in 1976 [4]. At that conference I recall
Bob Balzer excitedly greeting me as I awoke — we were sharing a room and he had gotten
up at 5:00 and had read all the conference papers from our session! Professor Bauer of the
Technische Universitaet in Munich was also talking on transformations about his CIP sys-
tem [6, 12]. He and his students became a major influence on formal underpinnings of the
field, the foundation, in succeeding years [9].

At this same time, the mid 1970’s, Cordell Green’s group at Stanford — including Elaine
Kant and David Barstow — was interested in very similar ideas for synthesis embodied in
their PSI system [20]. In particular, their interests evolved into implementing control [25]
and data structures [21]. Another related project was the Programmer’s Apprentice at MIT
by Rich, Waters, and Shrobe [38]. And the other very high-level language at the time (aside
from APL and Prolog) was SETL; Bob Paige was just then inventing formal differentiation
at Courant [32]. Tom Cheatham and Glen Halloway at Harvard were transforming EL-1, an
extensible language [11]. But perhaps the greatest purveyor of useful transformations at the
time was Jim Boyle, whose TAMPR system was still in use in 2000 [8]! Representatives from
these groups of researchers met on the West Coast at Information Sciences Institute in 1979.
(Naturally, there were some I am omitting simply from fading memory.) It was some time
before the first meeting that we met and hired Martin Feather, who studied with Darlington;
his thesis on the ZAP system concerned capturing fold/unfold strategies formally [15].

Many from this group then met at the Second NATO Workshop on Software Engineering
in Munich in 1983 [33]. It was there that I met Bill Scherlis whose Stanford thesis [39]
concerned a particularly fruitful tactic for program transformation that people should be
aware of today, called specialization. The technique is simple: change the statement of the
problem from transforming f(type) to one of transforming F (setoftype), such that F ({x}) =
f(x). This is a very elegant transformation that yields surprising results, because one can
take advantage of the relationships between the pieces of what amount to be intermediate

266 David S. Wile

results in F ’s computation. His derivations of parsing algorithms, e.g. Earley’s algorithm,
by specialization showed how one can take advantage of sets of partial results effectively.
This meeting was also where Bob Paige introduced his formal differentiation work to the
community.

But back to the main thread of our research. In the beginning stages, we concentrated
on synthesis [1] and foundational aspects of program transformation [44]. At Information
Sciences Institute in a different group, Susan Gerhart studied the relationship of program
transformations to program verification, establishing a formal method for determining when
a transformation is valid [18]. However, fairly early on, we realized that the majority of
transformation applications in real programs would be of rather limited algorithmic interest
and focused on the transformation process instead. The human decision process of deciding
what transformations to apply, where, and why, was exceedingly expensive in human time —
the computer, to optimize even the simplest program, applied hundreds of transformations
on behalf of the human. Having just hired Martin Feather, we capitalized on the idea he (and
Darlington) germinated in the ZAP system, which was to capture the transformation process
in a formal document that could be used to replay the transformations at a later time. I
invented a language called Paddle [45], that worked within our syntax-based transformation
system, Popart, that had been under development since 1977 [47].
Popart
Popart provides a tool suite with which transformation experts can prototype languages
rapidly — both their syntax and associated semantics; it was a kindred spirit of Men-
tor [14]. Popart relies on the specification of concrete syntax in a BNF variant that supports
directly repetition, optionality, and precedence. Annotations to the concrete syntax affect
details of the abstract syntax used to represent “parse trees” compactly. Other declarations
may be used to affect the lexical analyzer tables, which are produced automatically for
each concrete syntax. The concrete syntax can be specified in such a way that formatting
(“pretty-printing”) information is derived from its specification. In addition, it can also be
affected by tables much as the lexical analyzer. Analysis routines, simplifiers, transform-
ers and translators can be expressed using so-called “syntax-directed experts” — rule sets
whose patterns are written in an extension to a language’s concrete syntax that introduces
“pattern variables”. (Today’s LCF system exhibits many of these same characteristics [19].)
These experts produce attributes of the parse trees to which they are applied often in a
more expressive way (I believe) than using attribute grammars [37]. Often, such experts are
easily written, and more importantly, easily read by novice programmers; generally, a deep
background in the use of Common Lisp is unnecessary for generating a grammar and some
of the associated semantics, quickly.
Paddle
In order to manipulate the abstract syntax trees back then we had two facilities: the sets of
transformation rules used to implement analyzers, transformations, and translations men-
tioned above, along with a more primitive, syntax-directed editing mechanism. The Paddle
metaprogramming language invoked these mechanisms as primitives. Paddle was goal-based,
in the sense that activities could fail and mechanisms could expect and react to that failure.
It was an imperative, sequential language with composition mechanisms to achieve com-
pound, conditional, parallel (conceptually, implemented sequentially), or choices of goals.
Because the partial effects of failing events were automatically undone, backtracking was in-
herent. At the time, the LCF tacticals were clearly related, although applied in the different
context of theorem proving [19].

In the early 1980s, Balzer, Cheatham, and Green wrote their famous article on Knowledge-
Based Software Assistants [2], and transformation systems were established as the key to
the future of program development environments. Around 1982 I started attending the IFIP
WG2.1 (the Algol committee) meetings, along with the CIP — Fritz Bauer, Peter Pepper,
Manfred Broy, Helmut Partsch — and SETL groups — Jack Schwartz and Bob Paige — and

Program Transformations: Some Lessons from the 1980s 267

Jim Boyle, and met others interested in transformations that had not been brought to my
attention before that; Alberto Pettorossi, Richard Bird, Robert Dewar, Lambert Meertens,
and Michel Sinzoff, to name a few. Later members Doug Smith, Alan Goldberg, Doaitse
Swierstra, Jeremy Gibbons and Ooge de Moor have done extensive work with transforma-
tions also.

Our group at Information Sciences Institute concentrated on specific kinds of transfor-
mations, such as those to remove nondeterminism, or those to remove historical references,
and further specification techniques [16], However, even in the early 1980s we decided we
were having little success convincing people of the power of transformation systems, in part
because we were not using them to program our everyday programs ourselves. Hence, we
decided to apply the technology to our own programming environment, in what became the
Formalized System Development testbed at Information Sciences Institute. This system fur-
ther stimulated systems such as Gail Kaiser’s Marvel system and HP’s Softbench, especially
their reliance on triggered activities.

Unfortunately, the transformation process itself was lost! Instead, aspects of the Gist
language were incorporated into the system infrastructure, including the use of relational
abstraction and triggered activities [13]. The formal development process was captured, as
a stylized “process program”, but the grain-size of the transformations was large editing
steps [30]. Part of the group began to emphasize requirements engineering and the use of
“high-level editing commands” — transformations that preserved some properties of the
specification, but not the functionality. Feather and Johnson designed the Aries system to
incorporate these concepts [22,23].

I on the other hand, diverged along a different track. My feeling was that the whole idea
of a “wide-spectrum” specification language was flawed: every construct would need to be
understood in concert with every other one. This might require reasoning with concepts as
disparate as backtracking and register allocation at the same time, which is clearly impossi-
ble. I noticed that the way wide spectrum languages were being used was much more stylized
in both our work and the CIP system: layers of concern were mapped away in a logical se-
quence. Essentially a process of simplify and then apply all the transformations required
to remove, e.g. historical references, was used, followed by simplification and application of
transformations to remove derived relationships, etc. This, together with the notions that
Jim Neighbors was proposing in his Draco system [31], and Tim Standish with the Arcturus
language [42], led me to develop the notion of Local Formalisms — formalisms tailored to
just the specified problem area, to be implemented with a very specific metaprogram having
the flavor just described [46]. Surprisingly, that characterization was exactly what Jim Boyle
had been using in his TAMPR system for 15 years. We had “progressed” from synthesis and
foundation work, to metaprogram development work, and finally ended up with problem
domain-specific, extended compilers.

3 Lessons Learned or Observed
Although the previous section indicated broadly some of the lessons that caused us to shift
our directions or emphasis, here I will try to cull out the essential lessons I learned, almost
all from mistakes we made, but in some cases, observations of mistakes made by others.
These should be taken with a grain of salt: they are very idiosyncratic. It must be admitted
that our group might not have agreed among ourselves on any one of these lessons!
System Design Aspects
Automate Voraciously. The single biggest mistake we made consistently throughout our
history was to assume that the user needs to micromanage the development process. There
is a fine balance between complete automation, advice-driven automated activity, and purely
manual actions. I have noticed that the tendency of almost all formally oriented people —
from theorem prover types to rocket scientists programming deep space satellites (literally!)
— is to put up with extensive repetition of extremely rote activities. For one theorem prover,

268 David S. Wile

I was able to program a very small strategy in Paddle that proved the entire practice set of
theorems in the system tutorial entirely automatically; yet no facility was ever introduced
into the system to permit users to do this themselves. Instead, they had to repeatedly invoke
the same manual procedures “as last time”. An early version of the CIP system suffered
similarly from this malady.

Despite our best efforts, we were guilty of being too cautious as well. The user was to make
all the decisions regarding transformations. Fairly quickly we recognized a pattern of activity
comprising the steps: (1) get the program into condition for the transformation pattern we
really want to apply, by applying what we called “jittering” transformations (“conditioning”
was a better term, but the game industry later came up with the ideal term: “morphing!”);
(2) apply the transformation; and then, (3) clean up or simplify the result. Hence, Popart
allowed one to supply the conditioning and simplifying transformations, which were then
applied automatically when a user selected a transformation for the system to apply.

Although these facilities were helpful, in the end the user still had far too much auton-
omy. When the formal development process was replayed on slightly changed programs, the
transformations failed to apply and the process halted. We actually needed to find ways to
increase the automation of the development process, removing some of the ability of the
user to make detailed decisions regarding sequences of transformation applications. So, the
lesson to take away is to be diligent in seeking to support the normal case with automation
or syntactic sugar; mathematically inclined folks like ourselves tend to be wary of losing
control and, hence, are reluctant to look for such opportunities, since they are not intellec-
tually challenging. Actually, it is probably more honest to admit that our expertise in such
design is quite limited.

Take control of input and output formatting. This is somewhat related to the above lesson.
Although the user should feel free to edit a textual representation of the specification, one
should feel equally free to apply a transformation to the specification (equivalence preserving
or not). When we switched from Interlisp to Common Lisp on the Symbolics machine, we
lost the structural representation of the program and were set back seriously in the Lisp
programming environment. We never regained the power of the Interlisp metaprogramming
facilities (on Lisp programs themselves) for our everyday programming activity.

Another implication here is that the system should be doing the program/specification lay-
out (pretty printing) and the association of comments with relevant parts of the program.
Again, provide advice mechanisms to guide the automation of these activities rather than
allow users to determine the exact layouts themselves.

Separate the API from the User Interface. Otherwise, one cannot possibly do replay,
or rather an entirely different dialect must be developed that is equivalent to the gestures
coming from the interface. This is a much better-recognized tenet of modern system design,
so it might seem not to be worth mentioning, but an implication of this is that every time
your program pops up a question with an answer box to be filled in by the user, be sure
that the user could have provided the program previously — declaratively — with exactly
the same information.

Describe, don’t point! Capturing user gestures for replay is a bad idea for several reasons:
the system never understands why the user pointed; it does not understand whether it should
be done again if the program changes a bit; and it may not even know what to point to if
it changes! The Aries system overcame the use of pointers by characterizing with predicates
the situation in which a transformation would reapply.

Monolithic (“Stovepipe”) systems are a bad idea. Back in the 1980s there were very few
standards for systems that could be relied on. Lots of activity in programming environments
meant different proposals for persistence, versioning, abstract syntaxes, tool invocation pro-
tocols, etc., so we tended to grow our own versions of all of these, even when they were not
the focus of our interest. Popart itself was an instance of a solution to provide a foundation
for transformation systems rather than an object of research in itself. So most systems failed

Program Transformations: Some Lessons from the 1980s 269

due to the high cost of adopting the tools and the costs in time, if not money, to learn all
the peripheral aspects around the tool that really constituted the important contribution.
Today’s software engineers are much more careful to make APIs very clean and use those
standards that exist — e.g. Corba and DCOM — whenever possible. However, many systems
introduced in recent years require an incredibly high buy-in price, in time invested to learn
how to use them if not in literal cost. If we want our tools to be tried out by a variety of
people on a variety of platforms, they must be simplified and their functionality decomposed
into “bite-sized”, easily adopted or adapted tools.
Technical Aspects
Yesterday’s hard problems remain difficult. Many problems we had were due in part to re-
source limitations. “Jittering” (conditioning) is one such problem that may very well be more
tractable today, so it should be revisited. Moreover, there are cleaner theories of metapro-
gramming, associative-commutative Knuth-Bendix and fixed-point fusion to use as starting
points, for example.

Another was the need to delay transformation applications to allow further refinements
to constrain the solution space — I needed this in my “type transformations” paper to handle
the tricky merge that occurs in heapsort of the output with the input data structures [39].
This was generally not done, because it was too hard to keep track of. I think that both of
these problems will benefit from Kibler’s approach [26], of applying metaprograms to the
transformations themselves to preanalyze what situations they should best be applied in.
This idea was incorporated in the Aries system, where the transformations were indexed by
their effects [22].

Metaprograms should be expected to fail. I do not think there is much controversy here.
All the interesting strategic programs are failure-based. Yet there is precious little support
for failure, especially in modern programming languages.

Capturing intent is very difficult. A necessary tenet of the use of replay is that the designer
somehow expresses intent when doing the design. Unfortunately, all mechanisms heretofore
have been intrusive and very brittle, due to the unpredictable nature of the changes that
may be made to the specification. This is exactly why the preference to deal with layers of
concerns, if possible, arose (Boyle; CIP layers; modern approach of Batory). Layers may also
have structural assumptions built in, such as layer-specific transformations for conditioning
and subsequent simplification.

4 Conclusions
Many modern results in transformation systems as used in problem-specific areas have put
to rest the fear that we had in the early 1980s that the use of transformations would never
become practical. For example, everyone should know about the amazing results in syn-
thesizing solutions to real problems embodied in Doug Smith’s KIDS system [40]. More-
over, research in metaprogramming is one of today’s most active transformational areas; see
Kestrel’s Specware system [41], my metaprogramming calculus [48], OGI’s use of Haskell [27],
Batory’s technology [5], and Visser’s Stratego system [43]. The emphasis on metaprogram-
ming is in part due to the increased interest in domain-specific language design and sup-
port [49,50]. Essentially, research in extended compilation has become focused on particular
problem domains, where reusing the still-significant amount of work that goes into designing
a metaprogram is effectively leveraged [36].

Spinoffs from early transformation research threads continue. For example, specialization
led to results in partial evaluation [24] and early recursion removal strategies led to [34,35].
The transformation field is beginning to flourish again as evidenced by interest in recent
workshops at OOPSLA 2003 and Dagstuhl in 2005 and by its reinvention in “refactoring”
and re-engineering. Its traditional success as an explanatory mechanism for algorithm under-
standing and derivation has always formed a firm pedagogical basis for its use. Although Bob
Paige was proud of his Raps system, one of his greatest abilities was to explain how intricate

270 David S. Wile

algorithms were really the result of the stepwise application of incremental transformations
to a perspicuous problem solution. He applied these in a wide variety of problem domains,
the last of which he reported on in a workshop on algorithmic languages and calculi [7]. His
work also continues in the highly competent hands of Y. Annie Liu [28].

In summary, I have tried to present an egocentric version of the history of transformation
systems through the 1980s as they affected me and our group, along with random lessons
from the 1980s that can still be applied today, especially encouraging all not to repeat our
mistakes! It would be interesting to measure how today’s systems have progressed along the
dimensions of Foundations, Synthesis, Metaprogramming, and Extended Compilation. I’m
sure Bob Paige would have found that to be a fascinating and challenging exercise.

Acknowledgements

I want to thank Bob Balzer, Neil Goldman, Martin Feather, Bill Swartout, Lewis Johnson,
Don Cohen, K. Narayanaswamy, Dennis Allard, and many others in Information Sciences
Institute’s Software Sciences Division who contributed over the years to these efforts!

References

1. R. M. Balzer: Transformational implementation: An example. IEEE Transactions on
Software Engineering SE, 7(1):3–14, January 1981.

2. R. M. Balzer, T. E. Cheatham, and C. Green: Software technology in the 1990s: Using
a new paradigm. Computer Magazine, 1983.

3. R. M. Balzer and N. M. Goldman: Principles of good software specification and their
implications for specification languages. In Specification of Reliable Software, 58–67.
IEEE Computer Society, 1979.

4. R. M. Balzer, N. M. Goldman, and D. S. Wile: On the transformational implementation
approach to programming. In Proceedings of the Second International Conference on
Software Engineering, 337–344, October 1976.

5. Don Batory and B. J. Geraci: Composition validation and subjectivity in GenVoca
generators. IEEE Transactions on Software Engineering SE, February 1997.

6. F. L. Bauer. Programming as an evolutionary process: In Proceedings of the Second
International Conference on Software Engineering, 223–234. IEEE Computer Society,
October 1976.

7. R. S. Bird and L. G. L. T. Meertens, editors: Algorithmic Languages and Calculi. IFIP
TC2/WG 2.1 International Workshop on Algorithmic Languages and Calculi, 17–22,
Alsace, France. Chapman & Hall, February 1997.

8. J. M. Boyle: Program adaption and transformation. In Practice in Software Adaption
and Maintenance: Proceedings of Workshop on Software Adaption and Maintenance,
Berlin, 3–20. North-Holland, 1979.

9. M. Broy, H. Partsch, P. Pepper, and M. Wirsing: Semantic relations in programming
languages. In Proceedings of IFIP Congress, Amsterdam, 101–106. North-Holland, 1983.

10. R. M. Burstall and J. Darlington: A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, January 1977.

11. T. E. (Jr) Cheatham, G. H. Holloway, and J. A. Townley: Program refinement by
transformation. In of the Fifth International Conference on Software Engineering, San
Diego, CA, 430–437, March 1981.

12. CIP Language Group: The Munich Project CIP. Volume I: The Wide Spectrum Lan-
guage CIP-L. Lecture Notes in Computer Science 183. Springer, 1985.

13. D. Cohen: Automatic compilation of logical specifications into efficient programs. In
Proceedings of the 5th National Conference on Artificial Intelligence AAAI-86, Philadel-
phia, PA, USA, 20–25, April 1986.

14. V. Donzeau-Gouge, G. Kahn, B. Lang, and B. Mélèse: Documents structure and mod-
ularity in Mentor. In Software Development Environments (SDE), 141–148, 1984.

Program Transformations: Some Lessons from the 1980s 271

15. M. S. Feather: A system for assisting program transformation. ACM Toplas, 4(1):1–20,
1982.

16. M. S. Feather: Language support for the specification and development of composite
systems. ACM Trans. Program. Lang. Syst., 9(2):198–234, 1987.

17. M. S. Feather: A survey and classification of some program transformation techniques.
In L. G. L. T. Meertens, editor, Proceedings IFIP TC2 Working Conference on Program
Specification and Transformation, Bad Tölz, Germany, 165–195. North-Holland, 1987.

18. Susan L. Gerhart: Correctness-preserving program transformations. In 2nd ACM POPL
Symposium, Palo Alto, CA, USA, 54–66, 1975.

19. M. J. Gordon, A. J. Milner, and C. P. Wadsworth: Edinburgh LCF. Lecture Notes in
Computer Science 78. Springer, 1979.

20. C. Green: A summary of the PSI program synthesis system. In Proceedings of the
Fifth International Conference on Artificial Intelligence, Cambridge, MA, USA, 380–
381, August 1977.

21. C. Green and D. R. Barstow: On program synthesis knowledge. Artificial Intelligence,
10(3):241–279, 1978.

22. W. L. Johnson and M. S. Feather: Using evolution transformations to construct speci-
fications. In M. Lowry and R. McCartney, editors, Automating Software Design, 65–91.
AAAI Press, 1991.

23. W. L. Johnson, M. S. Feather, and D. R. Harris: Representation and presentation of
requirements knowledge. IEEE Trans. Software Eng., 18(10):853–869, 1992.

24. N. D. Jones, C. K. Gomard, and P. Sestoft: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

25. E. Kant: On the efficient synthesis of efficient programs. Artif. Intell., 20(3):253–305,
1983.

26. D. F. Kibler: Power, Efficiency, and Correctness of Transformation Systems. PhD thesis,
Computer Science Department, University of California at Irvine, CA, USA, 1978.

27. R. Kieburtz, F. Bellegarde, J. Bell, J. Hook, J. Lewis, D. Oliva, T. Sheard, T. Walton,
and T. Zhou: Calculating software generators from solution specifications. Technical
Report CS/E-94-032B, Oregon Graduate Center, USA, 1994.

28. Y. A. Liu: Incremental Computation: A Semantics-Based Systematic Transformational
Approach. Ph.D. thesis, Department of Computer Science, Cornell University, Ithaca,
New York, 1996.

29. L. G. L. T. Meertens, editor: Program Specification and Transformation. Proc. IFIP
TC2/W.G. 2.1 Working Conference on Program Specification and Transformation, Bad
Tölz, Germany. North-Holland, 1987.

30. K. Narayanaswamy: Static analysis-based program evolution in the common lisp frame-
work. In Proceedings of the 10th International Conference on Software Engineering,
Singapore, 222–230, April 1988.

31. J. Neighbors: Software Construction Using Components. Ph.D. thesis, Computer Science
Department, University of California at Irvine, CA, USA, 1981.

32. R. Paige: Transformational programming – applications to algorithms and systems. In
10th POPL Symposium, Austin, TX, USA, 73–87, 1983.

33. P. Pepper, editor: Program Transformation and Programming Environments, Workshop
Report. Nato ASI Series F 8. Springer, 1984.

34. A. Pettorossi and R. M. Burstall: Deriving very efficient algorithms for evaluating linear
recurrence relations using the program transformation technique. Acta Informatica,
18:181–206, 1982.

35. A. Pettorossi and M. Proietti: Rules and strategies for transforming functional and logic
programs. ACM Computing Surveys, 28(2):360–414, 1996.

36. J. C. Ramming and D. S. Wile: Guest editorial: Introduction to the special section
“Domain-Specfic Languages (DSL)”. IEEE Trans. Software Eng., 25(3):289–290, 1999.

272 David S. Wile

37. T. W. Reps and T. Teitelbaum: The Synthesizer Generator. Springer, New York, 1988.
38. G. Rich: A formal representation for plans in the programmer’s apprentice. In Proceed-

ings 7th International Joint Conference on Artificial Intelligence, 1981.
39. W. L. Scherlis: Program improvement by internal specialization. In Proc. 8th ACM

Symposium on Principles of Programming Languages, Williamsburgh, Va, 41–49. ACM
Press, 1981.

40. D. R. Smith: KIDS: A semi-automatic program development system. IEEE Transac-
tions on Software Engineering — Special Issue on Formal Methods, 16(9):1024–1043,
September 1990.

41. Y. V. Srinivas: Refinement of parameterized algebraic specifications. In R. S. Bird and
L. G. L. T. Meertens, editors, Algorithmic Languages and Calculi, volume 95 of IFIP
Conference Proceedings, 164–186. Chapman & Hall, 1997.

42. T. Standish: Arcturus. Seminar USC/Information Sciences Institute (Marina del Rey,
CA, USA), Fall 1980.

43. E. Visser: Program transformation with Stratego/XT: Rules, strategies, tools, and sys-
tems. In C. Lengauer et al., editor, Domain-Specific Program Generation, Lecture Notes
in Computer Science 3016, 216–238. Springer, 2004.

44. D. S. Wile: Type transformations. IEEE Trans. Software Eng., 7(1):32–39, 1981.
45. D. S. Wile: Program developments: Formal explanations of implementations. Commun.

ACM, 26(11):902–911, 1983.
46. D. S. Wile: Local formalisms: Widening the spectrum of wide-spectrum languages. In

L. G. L. T. Meertens, editor, Proceedings IFIP TC2 Working Conference on Program
Specification and Transformation, Bad Tölz, Germany, 459–481. North-Holland, 1987.

47. D. S. Wile: Popart: Producers of parsers and related tools. Reference manual,
USC/Information Sciences Institute, Marina del Rey, CA, USA, 1993.

48. D. S. Wile: Towards a calculus for abstract syntax trees. In R. Bird and L. Meertens,
editors, Algorithmic Languages and Calculi, 324–335, February 1997.

49. D. S. Wile: Supporting the DSL spectrum. Journal of Computing and Information
Technology. CIT, 9(4):263–287, 2001.

50. D. S. Wile: Lessons learned from real DSL experiments. Sci. Comput. Program.,
51(3):265–290, 2004.

